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Résumé

La théorie de l’information à coup unique vise à étudier les tâches de communication et de
traitement de l’information pour des états et des processus généraux avec une structure
minimale. Une telle généralité est cruciale pour analyser les tâches de communication
avec des ressources limitées et la sécurité des protocoles cryptographiques. Dans le régime
asymptotique pour les tâches d’information avec une structure i.i.d. (indépendante et
identiquement distribuée), les taux sont typiquement caractérisés par l’entropie de von
Neumann et ses dérivées. Dans le régime à coup unique, une multitude d’entropies
différentes sont nécessaires à cette fin. L’une des plus importantes est la min-entropie lisse,
qui caractérise les taux des protocoles cryptographiques. Contrairement à l’entropie de von
Neumann, le comportement de la min-entropie lisse est souvent contre-intuitif. Les outils
de décomposition de la min-entropie lisse sont également assez restrictifs, rendant difficile
l’analyse des structures qui émergent naturellement en théorie de l’information.

Une telle structure, que nous appelons une chaîne d’approximation, constitue le thème
central de cette thèse. Pour un état ρAn1B, nous appelons une séquence d’états (σ

(k)
Ak1B

)nk=1

une chaîne d’approximation de ρ si pour chaque k, ρAk1B ≈ε σ
(k)
Ak1B

. Ces structures émergent
fréquemment lors de l’incorporation d’approximations dans les identités entropiques, l’étude
des imperfections et le développement de preuves de sécurité. Alors que l’entropie de von
Neumann de ρ peut être facilement exprimée en termes d’entropies des états de sa chaîne
d’approximation, il n’est généralement pas possible de le faire avec la min-entropie lisse.

Dans cette thèse, nous développons des techniques pour établir des bornes entropiques
avec des chaînes d’approximation et les appliquons à des scénarios cryptographiques. Notre
travail commence par considérer l’un des cas les plus simples d’une telle chaîne, où les
registres de ρ sont presque indépendants les uns des autres, et culmine avec l’établissement
d’une règle de chaînage universelle pour la min-entropie lisse, qui permet de borner celle-ci
en termes des entropies des états d’une chaîne d’approximation.
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De plus, nous prouvons deux versions approximatives du théorème d’accumulation d’en-
tropie (EAT), qui est un outil important pour borner la min-entropie lisse d’un état produit
par un processus séquentiel. La première utilise des approximations des canaux utilisés dans
le processus EAT, tandis que la seconde, appelée EAT approximatif non-structuré, relâche
significativement la structure séquentielle requise sur l’état.

Nous mettons en valeur ces outils en les utilisant pour résoudre deux problèmes crypto-
graphiques importants. Tout d’abord, nous prouvons la sécurité de la distribution quantique
de clés (QKD) avec des corrélations à la source, qui sont des corrélations indésirables entre les
rounds du protocole survenant en raison des imperfections de la source. Ces corrélations ont
été un défi persistant pour la QKD. Nous fournissons une méthode simple et générale pour
réduire la sécurité d’un protocole QKD avec ces corrélations à un protocole sans ces dernières.

Notre deuxième application majeure est la preuve de la sécurité de la distribution
quantique de clés device-independent (DIQKD) parallèle. En adaptant les techniques de
répétition parallèle des jeux non-locaux, nous construisons une chaîne d’approximation
structurée pour la sortie du protocole. L’application du EAT approximatif non-structuré à
cette chaîne fournit alors une preuve de sécurité pour le protocole.

Mots-clés : Information quantique, théorie de l’information, cryptographie, distribu-
tion quantique de clés.
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Abstract

One-shot information theory aims to study communication and information processing
tasks for general states and processes under minimal structure. Such generality is crucial
for analysing communication tasks with limited resources and the security of cryptographic
protocols. In the asymptotic regime for information tasks with an i.i.d. (independent and
identically distributed) structure, the rates are typically characterised by the von Neumann
entropy and its derivatives. In the one-shot regime, a multitude of different entropies
are required for this purpose. One of the most important among these is the smooth
min-entropy, which characterises the rates of cryptographic protocols. In contrast to the
von Neumann entropy, the behaviour of the smooth min-entropy is often unintuitive. Tools
for decomposing the smooth min-entropy are also quite restrictive, making it challenging to
analyse structures that naturally arise in information theory.

One such structure, which we call an approximation chain, forms the central theme of
this thesis. For a state ρAn1B, we term a sequence of states (σ

(k)
Ak1B

)nk=1 an approximation chain
of ρ if for each k, ρAk1B ≈ε σ

(k)
Ak1B

. These structures frequently emerge when incorporating ap-
proximations in entropic identities, studying imperfections, and developing security proofs.
While the von Neumann entropy of ρ can be readily expressed in terms of the entropies of its
approximation chain states, it is generally not possible to do so with the smooth min-entropy.

In this thesis, we develop techniques for establishing entropic bounds with approximation
chains and apply these to cryptographic scenarios. Our work begins by considering one of
the simplest cases of such a chain, whereby the registers of ρ are almost independent of one
another, and culminates in establishing a universal chain rule for the smooth min-entropy,
which enables one to bound the smooth min-entropy for a state in terms of entropies of its
approximation chain.

Furthermore, we prove two approximate versions of the entropy accumulation theorem
(EAT), which is an important tool for bounding the smooth min-entropy of a state produced
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by a sequential process. The first enables approximations to the channels used in the EAT
process, while the second, termed the unstructured approximate EAT, significantly relaxes
the sequential structure required on the state.

We showcase these tools by using them to solve two significant cryptographic problems.
First, we prove the security of quantum key distribution (QKD) under source correlations,
which are undesired correlations among states across independent QKD rounds arising due
to source imperfections. These correlations have been a persistent challenge for QKD. We
provide a simple and general method to reduce the security for a QKD protocol with these
correlations to one without.

Our second major application is proving the security of parallel device-independent
quantum key distribution (DIQKD). By adapting techniques from the parallel repetition of
non-local games, we construct a structured approximation chain for the protocol output.
Applying the unstructured approximate EAT to this chain then yields a proof of security
for the protocol.

Keywords: Quantum information, information theory, cryptography, quantum key
distribution.
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Chapter 1

Introduction

Information theory studies the transmission and processing of information. The field
stemmed from Claude Shannon’s seminal paper [Sha48], which aimed to identify the funda-
mental limits of compression and the rate of information transmission. The advent of quan-
tum computation and information necessitated the development of quantum information
theory, extending this field into the quantum realm. To establish a foundation in quantum
information theory, researchers began by first understanding the rates of communication and
compression, similar to Shannon before them. To determine the fundamental rates for these
problems, it was natural to use the asymptotic limit, which involves studying the problem
under the limit of a large number of channel uses or input samples. This approach allows
one to accurately calculate the rates, without getting encumbered by the complexity which
arises from the higher-order terms. In this asymptotic regime, these rates are characterised
by the von Neumann entropy and its derivatives [Sch95,SW97,Hol98,BSST99,Wil13].
For a state ρA, the von Neumann entropy is defined as(1)

H(A)ρ ∶= − tr(ρA log ρA) (1.1)

and the von Neumann conditional entropy of register A with respect to register B for a state
ρAB is defined as

H(A∣B)ρ ∶=H(AB)ρ −H(B)ρ. (1.2)

While results in the asymptotic limit provide valuable insights, they assume an infinite
number of resources, which is not physically realizable in real-world systems. For practical
applications, one must move beyond asymptotic analysis and account for finite-size effects.
Furthermore, these analyses rely on the problem having some sort of independent and
identically distributed (i.i.d.) structure. For instance, in source coding, which studies the
compression of information produced by a quantum source, the states are typically assumed

(1)We use base e for exp and log, and nat units for entropies throughout this thesis.



to be i.i.d. In channel coding, where one analyses the limits of information transmission
using noisy quantum channels, the channels are considered to be independent and identical.
This assumption greatly simplifies these problems. However, it is not universally applicable
in practical scenarios. As an example, consider an eavesdropper trying to listen in during a
secret distribution protocol, which requires multiple rounds. There is no reason to believe
a priori that the eavesdropper’s actions in the nth round of such a protocol would be
independent of the previous rounds.

Therefore, recent efforts have focused on developing a one-shot theory of quantum
information [Ren06,Tom12], which accounts for finite-size effects and goes beyond the
assumption of the i.i.d. setting. One-shot information theory, in its most general form, aims
to characterise information-theoretic tasks without any assumptions on the structure of the
processes or states involved. This approach allows for tight characterisations of general
scenarios, which can then be refined by incorporating additional structure specific to the
problem at hand, thus enabling one to incorporate finite-size effects. Moreover, it makes
the study of communication and cryptographic protocols more modular and helps to reveal
the minimal conditions necessary for an application to work.

This generalized approach is crucial for unconditional or information theoretically
secure cryptography, where one cannot place any kind of assumption on the actions of the
adversary (see, for example, [TLGR12,KWW12]). Quantum key distribution is one of the
most prominent examples of such a cryptographic protocol. Key distribution is a primitive
in cryptography, which allows two parties to establish a secret key for secure communication
even in the presence of an adversary. While classical key distribution protocols cannot
achieve unconditional security, it is possible to use properties of quantum particles like
the no-cloning principle to create unconditionally secure quantum key distribution (QKD)
protocols [BB84,Ben92,SP00].

The quest to prove security for QKD has been a significant driver of research in one-shot
information theory. The primary strategy for establishing the security of QKD relies on an
information-theoretic tool called privacy amplification, which allows for the extraction of a
completely random key from a string that might be partially correlated with an adversary’s
information. This setting can be analysed using one-shot information theory. It can be
shown that the length of the random key, which can be extracted in such a setting is
determined by an entropy measure called the smooth min-entropy, Hε

min(A∣B)ρ [TRSS10].
By demonstrating that this entropy for the string held by the honest parties at the end of

2



the QKD protocol is sufficiently large, one can use privacy amplification to derive a key
that is almost independent of the adversary. Privacy amplification is used similarly in other
cryptographic protocols as well. For this reason, the smooth min-entropy is one of the most
important entropies in one-shot information theory.

Formally for a state ρAB, the min-entropy of register A conditioned on register B is
defined as

Hmin(A∣B)ρ ∶= sup{λ ∈ R ∶ there exists a state σB such that ρAB ≤ e−λ 1A⊗σB} (1.3)

and the smooth min-entropy is defined as

Hε
min(A∣B)ρ ∶= sup

ρ̃
Hmin(A∣B)ρ̃ (1.4)

where the supremum is over all subnormalised states ρ̃AB which are ε-close to the state
ρ in the purified distance. For a classical-quantum state, ρAB = ∑a p(a) ∣a⟩ ⟨a∣ ⊗ ρ

(a)
B , the

min-entropy simplifies to the negative log of the probability with which one can guess
register A given access only to register B [KRS09].

The smooth min-entropy behaves very differently from the von Neumann conditional
entropy, which characterises privacy amplification in the i.i.d. setting. In particular, the
difference between these two can be very large. For example, consider the probability dis-
tribution pAn1B where B ∈R {0,1} is sampled randomly and An1 (2) are sampled uniformly at
random from n-bit strings if B = 1 and otherwise set to the all zero string if B = 0. For this
probability distribution, we have

Hε
min(A

n
1 ∣B)p ≤ log(2) and H(An1 ∣B)p =

n

2 log(2). (1.5)

Roughly speaking, the smooth min-entropy places a much higher weight on the worst
possible scenario of the conditioning register, whereas the von Neumann entropy places an
equal weight on all possible scenarios.

Thus, the von Neumann entropy generally follows the behaviour one intuitively expects
from a measure of uncertainty. Central to the work presented here, is the intuitive expecta-
tion that the total uncertainty of two registers A1 and A2 given a register B should be the
sum of the uncertainty of register A1 given B and the uncertainty of register A2, conditioned
on knowing both A1 and B. The von Neumann entropy, respects this intuition nicely and

(2)The notation An1 denotes the set of registers A1,A2,⋯,An.
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satisfies the following chain rule:

H(A1A2∣B)ρ =H(A1∣B)ρ +H(A2∣A1B)ρ. (1.6)

More generally, we can decompose the von Neumann entropy of a large system An1 given B
into a sum of the entropies of its parts as:

H(An1 ∣B)ρ =
n

∑
k=1
H(Ak∣A

k−1
1 B)ρ. (1.7)

The behaviour of the smooth min-entropy, on the other hand, deviates from these intuitive ex-
pectations. This is evident in the chain rule for smooth min-entropy [DBWR14,VDTR13],
which is notably more complex than Eq. 1.6:

Hε1+2ε2+δ
min (A1A2∣B)ρ ≥H

ε1
min(A1∣B)ρ +H

ε2
min(A2∣A1B)ρ − k(δ) (1.8)

where k(δ) = O (log 1
δ
). Moreover, it is easy to demonstrate that a smooth min-entropy

counterpart for the relation in Eq. 1.7 cannot hold true. Mathematically speaking, a relation
of the following form cannot be valid for ε in a neighborhood of 0:

H
g1(ε)
min (An1 ∣B)ρ ≥

n

∑
k=1
Hε

min(Ak∣A
k−1
1 B)ρ − ng2(ε) − k(ε), (1.9)

where the functions g1, g2, and k are dependent solely on ε and ∣A∣ (the dimension of
the Ak registers, assumed to be constant in n) and are independent of n. Furthermore,
g1(ε) and g2(ε) are required to be small functions of ε, meaning they are continuous and
approach 0 as ε tends to 0. To see that the smooth min-entropy cannot satisfy such a
bound, simply consider the classical distribution pAn1B used above in Eq. 1.5. In this case,
H
g1(ε)
min (An1 ∣B)p = O(1) and for each k, Hε

min(Ak∣A
k−1
1 B)p ≥ log 4/3. For small ε, Eq. 1.9 would

have a constant left-hand side and a linearly growing right-hand side, which results in a
contradiction.

As a consequence of this impossibility, identities for the smooth min-entropy, like the
chain rules [VDTR13], are much more restrictive. Similarly, tools like entropy accumula-
tion [DFR20,MFSR24], which decompose the smooth min-entropy, are quite rigid, in the
sense that they cannot be applied unless certain (Markov chain or non-signalling) conditions
apply. It is also not clear how one could relax the conditions for such tools.

Eq. 1.9 brings us to the concept of approximation chains. For a state ρAn1B, we define a
sequence of states (σ

(k)
Ak1B

)nk=1 as an ε-approximation chain of ρ if for every 1 ≤ k ≤ n, we have

ρAk1B ≈ε σ
(k)
Ak1B

. (1.10)
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It is noteworthy that the right-hand side of Eq. 1.9 is essentially a maximum over the sum
of the min-entropies of all possible approximation chains of state ρAn1B.

As we will see in this thesis, one often encounters scenarios where direct bounds on
the conditional entropies of the state ρ are unavailable; however, they can be obtained for
the entropies of its approximation chain states. For instance, consider a state ρAn1B where
the Ak registers are produced sequentially. Ideally, each register Ak should be sampled
independently from the rest. However, say imperfections in the production process introduce
minor correlations between Ak and the earlier registers. In such a case, we might only be
able to confirm that ρAk1B ≈ε ρAk ⊗ ρAk−1

1 B for every k. Here the states σ(k)
Ak1B

∶= ρAk ⊗ ρAk−1
1 B

form an ε-approximation chain for ρ. Despite these correlations, we expect the entropy of
An1 given B to be large for ρ, as the Ak registers are almost independent of B. In such cases,
a chain rule-like tool relating the entropy of ρ to the entropies of its approximation chain
states would be helpful.

The impossibility of a bound of the form in Eq. 1.9 also implies that Hε
min(A

n
1 ∣B)ρ can-

not be lower bounded meaningfully in terms of the min-entropies of the approximation
chain states of ρ, since these approximation chain states can simply be states satisfying
Hmin(Ak∣Ak−1

1 B)σ(k) = H
ε
min(Ak∣A

k−1
1 B)ρ for every k. On the other hand, the von Neumann

entropy of a state can easily be bounded in terms of its approximation chain by using the
continuity of the conditional von Neumann entropy [AF04,Win16] to modify Eq. 1.7 and
deriving:

H(An1 ∣B)ρ ≥
n

∑
k=1
H(Ak∣A

k−1
1 B)σ(k) − nf(ε) (1.11)

where f(ε) = O (ε log ∣A∣
ε ).

Approximation chains are commonly encountered while studying imperfections and errors
in protocols, approximations of entropic tools and cryptographic proofs. The absence of a
comparable bound for the smooth min-entropy severely limits us. In this thesis, we initiate
a study of approximation chains, with the aim of proving entropic bounds in terms of these
objects and subsequently using them for cryptographic applications.

1.1. Outline and Results
In the following, we present a chapterwise overview of the main results in this thesis.

Connections with existing literature and techniques used for proving these results will be
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discussed in the chapters themselves. The main chapters of this thesis are based on the
following papers and manuscripts:

(1) Smooth min-entropy lower bounds for approximation chains [MD24c].
(2) Proving security of BB84 under source correlations [MD24a].
(3) Universal chain rules from entropic triangle inequalities [MD24e].
(4) Security for parallel DIQKD [MD24b].

We have arranged the contents in the order in which they were developed, which is also
roughly the increasing order of sophistication.

Chapter 2: Background

In this chapter, we review the notation and fundamental concepts used throughout this
thesis. We present key tools in quantum information and information theory, and introduce
cryptographic primitives used in our work. These include the entropy accumulation theorem
(EAT), quantum key distribution (QKD), and device-independent quantum key distribution
(DIQKD). Readers familiar with the subject may choose to skip this chapter and refer back
to it as needed.

Chapter 3: Smooth min-entropy lower bounds for approximation
chains

In Chapter 3, we begin our exploration of approximation chains by examining them
under additional simplifying conditions. We first examine the simplest scenario: a state
with approximately independent registers. This is a state ρAn1B which, for every 1 ≤ k ≤ n,
satisfies

∥ρAk1B − ρAk ⊗ ρAk−1
1 B∥1

≤ ε. (1.12)

for some small ε > 0 and a large n (in particular n ≫ 1
ε ). That is, for every k, the system

Ak is almost independent of the system B and everything else which came before it. For
simplicity, let us further assume that for all k the state ρAk = ρA1 . Intuitively, one expects
that the smooth min-entropy (with the smoothing parameter depending on ε and not on n)
for such a state will be large and close to ≈ n(H(A1) − g(ε)) (for some small function g(ε)).
However, it is not possible to prove this result using traditional techniques, which rely only
on the triangle inequality and smoothing. The triangle inequality, in general, can only be
used to bound the trace distance between ρAn1B and ⊗nk=1ρAk ⊗ ρB by nε, which will result in

6



a trivial bound when n≫ 1
ε .

To demonstrate such a smooth min-entropy lower bound, we introduce a key tool used
throughout this thesis for analysing approximation chains: the entropic triangle inequality.
For two general states ρAB and ηAB, such that d ∶=Dδ

max(ρAB ∣∣ηAB) (see Definition 2.19), we
can easily bound the smooth min-entropy of ρ in terms of the min-entropy of η by using the
fact that there exists a state ρ̃AB such that ρ̃AB ≈δ ρAB and

ρ̃AB ≤ edηAB. (1.13)

Suppose, the state σB satisfies Dmax(ηAB ∣∣1A⊗σB) = −Hmin(A∣B)η, then

ρ̃AB ≤ e−(Hmin(A∣B)η−d) 1A⊗σB. (1.14)

This implies that

Hδ
min(A∣B)ρ ≥Hmin(A∣B)η −D

δ
max(ρAB ∣∣ηAB) (1.15)

We call this an entropic triangle inequality, since it is based on the triangle inequality
property of Dmax. We can further improve this smooth min-entropy triangle inequality
to (Lemma 3.5)

Hε+δ
min(A∣B)ρ ≥ H̃

↑
α(A∣B)η −

α

α − 1D
ε
max(ρAB ∣∣ηAB) −

g1(δ, ε)

α − 1 (1.16)

for some function g1, ε + δ < 1 and 1 < α ≤ 2.

Our general strategy for bounding the smooth min-entropy of a state in terms of its
approximation chain will be to first bound the “one-shot information theoretic” distance
(the smooth max-relative entropy distance) between the real state ρ (ρAn1B in the above
scenario) and a virtual, but nicer state, η (⊗nk=1ρAk ⊗ ρB above) by nf(ε) for some small
f(ε). Then, we use one of the entropic triangle inequalities above to reduce the problem of
bounding the smooth min-entropy on state ρ to that of bounding an entropy on the state η.
Using this strategy, we prove (Corollary 3.10) that for states satisfying the approximately
independent registers assumption, we have that

H
Õ(ε1/4)
min (An1 ∣B)ρ ≥ n (H(A1)ρ − Õ(ε1/4)) − Õ (

1
ε3/4

) (1.17)

where Õ hides logarithmic factors in 1/ε.

We also consider the scenario of approximate entropy accumulation in this chapter. In the
setting for entropy accumulation, a sequence of channelsMk ∶ Rk−1 → AkBkRk for 1 ≤ k ≤ n

sequentially act on a state ρ(0)R0E
to produce the state ρAn1Bn1E = Mn ○⋯ ○M1(ρ

(0)
R0E

). It is

7



assumed that the channels Mk are such that the Markov chain Ak−1
1 ↔ Bk−1

1 E ↔ Bk is
satisfied for every k. The entropy accumulation theorem (EAT) [DFR20], then provides a
tight lower bound for Hδ

min(A
n
1 ∣B

n
1E)ρ. We consider an approximate version of the above

setting where the channelsMk themselves do not necessarily satisfy the Markov chain con-
dition, but they can be ε-approximated by a sequence of channelsM′

k, which satisfies certain
Markov chain conditions. Such relaxations are important to understand the behaviour of
cryptographic protocols, like device-independent quantum key distribution [AFDF+18], im-
plemented with imperfect devices [JK23,Tan23]. Once again we can model this scenario
as an approximation chain: for every 1 ≤ k ≤ n, the state produced in the kth step satisfies

ρAk1Bk1E = trRk ○Mk (Mk−1 ○⋯ ○M1(ρ
(0)
R0E

))

≈ε trRk ○M
′
k (Mk−1 ○⋯ ○M1(ρ

(0)
R0E

)) ∶= σ
(k)
Ak1B

k
1E
.

Moreover, the assumptions on the channel M′
k guarantee that the state σ(k)

Ak1B
k
1E

satisfies
the Markov chain condition Ak−1

1 ↔ Bk−1
1 E ↔ Bk, and so one expects that the smooth

min-entropy is large for the state ρ similar to the original setting.

Following the strategy described above, in Theorem 3.12, we show the following smooth
min-entropy lower bound for the state ρAn1Bn1E for sufficiently small ε and an arbitrary δ > 0

Hδ
min(A

n
1 ∣B

n
1E)ρ ≥

n

∑
k=1

inf
ω
H(Ak∣BkR̃k−1)M′

k(ω) − nO(ε1/24) −O (
1

ε1/24) (1.18)

where the infimum is over all possible input states ωRk−1R̃k−1
for reference register R̃k−1

isomorphic to Rk−1, and the dimensions ∣A∣ and ∣B∣ are assumed constant while using the
asymptotic notation.

Chapter 4: Proving security of BB84 under source correlations

We use the techniques developed in Chapter 3 to address the source correlation problem
in QKD [PCLN+22]. Briefly speaking, the security proofs of QKD require that one of
the honest parties produce randomly and independently sampled quantum states in each
round of the protocol. However, the states produced by a realistic quantum source are
somewhat correlated across different rounds due to device memory and imperfections. These
correlations are called source correlations. Proving security for QKD under such a correlated
source has been a challenging problem, and no general satisfying solution was known
before. In this chapter, we use the entropic triangle inequality to reduce the security of the
BB84 QKD protocol with a correlated source to that of the QKD protocol with an almost
perfect source, for which security can be proven using existing techniques. This allows us to
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provide a general and simple proof of security for QKD in the presence of source correlations.

Chapter 5: Universal chain rules

In this chapter, we revisit the question of bounding the smooth min-entropy of a state
in terms of the entropies of its approximation chains, focusing on general approximation
chains unlike Chapter 3.

There are multiple alternative definitions of the smooth min-entropy, which are equal to
the one we defined above up to a constant [Ren06,TRSS10,ABJT20]. One of these, is
the H↓min min-entropy and its smoothed variant H↓,εmin, defined as:

H↓min(A∣B)ρ ∶= sup{λ ∈ R ∶ ρAB ≤ e−λ 1A⊗ρB} (1.19)

H↓,εmin(A∣B)ρ ∶= sup
ρ̃
H↓min(A∣B)ρ̃ (1.20)

where the supremum is over all subnormalised states ρ̃AB which are ε-close to the state ρ in
the purified distance. [TRSS10, Lemma 20] showed that this smooth min-entropy is equal
to the conventional Hε

min up to a constant:

H
ε/2
min(A

n
1 ∣B)ρ −O (log 1

ε
) ≤H↓,εmin(A

n
1 ∣B)ρ ≤H

ε
min(A

n
1 ∣B)ρ. (1.21)

One can now ask whether H↓,εmin satisfies a chain rule like Eq. 1.9, that is, does

H
↓,g1(ε)
min (An1 ∣B)ρ ≥

n

∑
k=1

H↓,εmin(Ak∣A
k−1
1 B)ρ − ng2(ε) − k(ε), (1.22)

hold true for some g1, g2 and k as in Eq. 1.9? We prove that this is indeed the case.
Establishing this in Theorem 5.7 is the first main result of this chapter. We term this a
universal chain rule for the smooth min-entropy to emphasise the fact that it is true and
meaningful for a constant ε ∈ (0,1) and an arbitrary n ∈ N. It is worth noting that this chain
rule allows us to break the smooth min-entropy of a system into a sum of the entropies of
its parts, with the entropies being almost as strong as the smooth min-entropy itself.

The second major result in this chapter is an unstructured approximate entropy accumu-
lation theorem (Theorem 5.8). Unlike the approximate EAT in Chapter 3, this theorem does
not require the state ρ to be produced by a sequential process. Nor does it consider approx-
imations at the level of channels. It shows that for any state ρAn1Bn1E with an approximation
chain (σ

(k)
Ak1B

k
1E

)nk=1 such that for every 1 ≤ k ≤ n:

σ
(k)
Ak1B

k
1E

= N k (σ̃
(k)
Ak−1

1 Bk−1
1 ERk

) (1.23)
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for some state σ̃(k)
Ak−1

1 Bk−1
1 ERk

and a channel N k ∶ Rk → AkBk which samples Bk independent
of the previous registers, we have the bound

H
Õ(ε1/6)
min (An1 ∣B

n
1E)ρ ≥

n

∑
k=1

inf
ωRkR̃k

H(Ak∣BkR̃k)Mk(ω) − nÕ(ε1/12) − Õ (
1

ε5/12) (1.24)

where the infimum is over all states ωRkR̃k .

Chapter 6: Security for parallel DIQKD

Security proofs for QKD protocols assume fully characterized devices, which is unrealistic
in practical implementations. Consequently, these implementations remain vulnerable to
side-channel attacks, where an adversary exploits imperfections in preparation and detec-
tion devices to extract additional information [LWW+10,SRK+15]. Device-independent
quantum key distribution (DIQKD) addresses this issue by implementing key distribution
with untrusted or potentially malicious devices. The security of DIQKD protocols relies
solely on the properties of quantum mechanics.

Typically, during a DIQKD protocol, multiple non-local games are played using quantum
states shared between the participants. The ability of the participants to win these games
with probabilities exceeding the limits of classical strategies ensures security of these
protocols. These games may be played sequentially or parallelly. Sequential protocols are
easier to analyse as they can be broken down into smaller steps, each depending only on
the preceding steps. In contrast, during parallel DIQKD, the two parties input all the
questions for the multiple games into their devices and receive all the answers at once.
This simultaneous nature makes the analysis of these protocols significantly more challenging.

This chapter focuses on proving security for parallel DIQKD. We employ techniques
developed for analysing parallel repetition of non-local games. Roughly speaking, we show
that the state produced at the end of the protocol, ρAn1Bn1Xn

1 Y
n
1 E

, where Xn
1 , Y

n
1 are the

questions, An1 ,Bn
1 are the answers for the non-local games, and E is the adversary’s register,

has an approximation chain (σ
(k)
Ak1B

k
1X

k
1 Y

k
1 E

)
n

k=1
satisfying:

σ
(k)
Ak1B

k
1X

k
1 Y

k
1 E

=MRk→XkYkAkBk
k (σ

(k,0)
Ak−1

1 Bk−1
1 Xk−1

1 Y k−1
1 RkE

) (1.25)

where Mk is the channel applied by participants playing a single round of the non-local
game. This result allows us to apply the unstructured approximate EAT proved in
Chapter 5 to establish the smooth min-entropy lower bound required for the security proof.
Our approach yields a more information-theoretic and general proof for parallel DIQKD

10



compared to previous proofs, although it also comes with certain limitations.

Chapter 7: Exploring further. . .

We conclude by briefly examining some problems in the broader field where approxima-
tion chains appear, and discussing how the techniques developed in this thesis might prove
useful for them.
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Chapter 2

Background

2.1. Notation
We use the notation [n] to denote the set {1,2,⋯, n}. For n quantum registers or

variables (X1,X2,⋯,Xn), the notation Xj
i refers to the tuple (Xi,Xi+1,⋯,Xj). For a set

S ⊆ [n], the notation XS represents the tuple (Xi)i∈S.

For a classical probability distribution pAB, the conditional probability distribution pA∣B

is defined as pA∣B(a∣b) ∶=
pAB(a,b)
pB(b) when pB(b) > 0. For the case when pB(b) = 0, we define

pA∣B to be the uniform distribution for our purposes. The probability distribution qBpA∣B

for a distribution q on random variable B is defined as qBpA∣B(b,a) ∶= qB(b)pA∣B(a∣b).

For a quantum register A, ∣A∣ represents the dimension of the underlying Hilbert space.
If X and Y are Hermitian operators, then the operator inequality X ≥ Y denotes the fact
that X − Y is a positive semidefinite operator and X > Y denotes that X − Y is a strictly
positive operator. We write supp(X) to denote the support of the Hermitian operator X
and use X ≪ Y to denote that supp(X) ⊆ supp(Y ).

A quantum state (or briefly just state) refers to a positive semidefinite operator with
unit trace. At times, we will also need to consider positive semidefinite operators with trace
less than equal to 1. We call these operators subnormalised states. We will denote the set of
registers a quantum state describes (equivalently, its Hilbert space) using a subscript. For
example, a quantum state on registers A and B, will be written as ρAB and its partial states
on registers A and B, will be denoted as ρA and ρB. A classical-quantum state on registers
X and B is given by ρXB = ∑x p(x) ∣x⟩ ⟨x∣ ⊗ ρB∣x, where ρB∣x are normalised quantum states
on register B.



The identity operator on register A is denoted using 1A.

The term “channel” is used for completely positive trace preserving (CPTP) linear maps
between two spaces of Hermitian operators. A channel N mapping registers A to B will be
denoted by NA→B. We refer the reader to [Wat18] for more information about quantum
states, channels and their properties.

A measurement (also called a positive operator valued measure or POVM) µ on register
A with outcomes Z stored in register Z is a tuple of positive operators (µ(z))z∈Z such that
µ(z) ≥ 0 and ∑z∈Z µ(z) = 1Z . For a quantum state, ρA, the probability of outcome z is given
by tr(µ(z)ρA).

Finally, we note that we use base e for both the exp and log functions in this thesis.

For quick reference, we summarise the key notation used throughout this thesis in Ta-
ble 2.1.

Notation Brief Description

[n] Set {1,2,⋯, n}
Xj
i Tuple (Xi,Xi+1,⋯,Xj)

XS Tuple (Xi)i∈S for S ⊆ [n]

pA∣B Conditional probability distribution of A given B for pAB
∣A∣ Dimension of Hilbert space of register A
X ≥ Y X − Y is positive semidefinite
X > Y X − Y is strictly positive
supp(X) Support of operator X
X ≪ Y supp(X) ⊆ supp(Y )

1A Identity operator on register A
NA→B Channel from register A to B
exp(⋅) Exponential function with base e
log(⋅) Logarithm function with base e

Table 2.1. Summary of notation used in this thesis.
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2.2. Distance measures
2.2.1. Schatten p-norms

Similar to how ∥⋅∥p is defined for vectors, one can define the Schatten p-norm for matrices,
including quantum states, as well.

Definition 2.1. For 1 ≤ p ≤ ∞, the Schatten p-norm for a matrix A is defined as

∥A∥p ∶= (tr ((A†A)
p
2 ))

1
p . (2.1)

The p-norm for a matrix A is in fact equal to the p-norm for the vector of its singular values,
s(A):

∥A∥p = ∥s(A)∥p . (2.2)

In quantum information, we are particularly interested in the Schatten 1-norm also called
the trace norm, which is useful for comparing the distance between quantum states. The
Holevo-Helstrom theorem gives us an operational interpretation for the trace norm.

Theorem 2.2 (Holevo-Helstrom theorem [Wat18, Theorem 3.4]). Suppose a source pro-
duces quantum states ρ and σ each with probability 1/2, then the probability of successfully
determining which state was prepared is at most

1
2 (1 + 1

2 ∥ρ − σ∥1) . (2.3)

This probability is achievable for appropriately chosen measurements.

In particular, in cryptography, if a protocol produces a state ρ, which has a trace norm
distance at most ε from the ideal state of the protocol, then the real state ρ acts like the
ideal state under all operations up to an error probability of ε [PR14].

2.2.2. Diamond norm for channels

We will also use the diamond norm distance as a measure of the distance between two
channels.

Definition 2.3. For a linear transform NA→B from operators on register A to operators on
register B, the diamond norm distance is defined as

∥NA→B∥◇ ∶= max
XAR∶∥XAR∥1≤1

∥NA→B(XAR)∥1 (2.4)

where the maximum is taken over all Hilbert spaces R (fixing ∣R∣ = ∣A∣ is sufficient) and
operators XAR such that ∥XAR∥1 ≤ 1.

15



Similar to the trace norm for states, the diamond norm determines the probability with
which one can operationally distinguish two channels [Wat18, Theorem 3.52].

2.2.3. Fidelity

The fidelity and the generalised fidelity are distance measures which are closely related
to the trace norm distance. They are defined as follows.

Definition 2.4. The fidelity between two positive operators P and Q is defined as

F (P,Q) = ∥
√
P
√
Q∥

2

1
. (2.5)

Definition 2.5. The generalised fidelity between two subnormalised states ρ and σ is defined
as

F∗(ρ, σ) ∶= (∥
√
ρ
√
σ∥1 +

√
(1 − trρ)(1 − trσ))

2
. (2.6)

2.2.4. Purified distance

The generalised fidelity turns out to be more natural than the trace norm for quantum
states while smoothing entropic measures. The purified distance is a metric defined using
the generalised fidelity. It will be used to quantify the distance while smoothing.

Definition 2.6. The purified distance between two subnormalised states is defined as

P (ρ, σ) ∶=
√

1 − F∗(ρ, σ). (2.7)

Purified distance and the trace norm are related by the following inequalities [Tom16,
Lemma 3.5], which are called the Fuchs-van de Graaf inequalities:

1
2 ∥ρ − σ∥1 ≤ P (ρ, σ) ≤ ∥ρ − σ∥

1/2
1 . (2.8)

2.3. Entropic quantities
We briefly define and discuss the commonly used entropic quantities in this thesis. We

refer the reader to the books [Wil13] and [Tom16] for a more comprehensive treatment of
these topics.

Throughout this thesis, we will use base e for both the functions log and exp. Therefore,
all the entropies in this thesis are in nat units. We note that this does not result in a major
change in well known information theoretic identities.

16



2.3.1. von Neumann entropy

Entropic quantities are used to quantify the amount of information or uncertainty in
different scenarios. The most commonly used entropic measure is the von Neumann entropy,
which is defined for a state ρA as

H(A)ρ ∶= − tr(ρA log ρA). (2.9)

The von Neumann entropy operationally characterises the asymptotic rate of compression
for an i.i.d. source (see, for example [Wil13, Theorem 18.2.1]). We can use this definition
to create a conditional entropy, which measures the uncertainty of a register with respect to
another register (see [Wil13, Corollary 22.4.2] for an operational interpretation of H(A∣B)ρ

in terms of the entanglement required for state transfer).

Definition 2.7. For a state ρAB, the conditional von Neumann entropy of register A with
respect to register B is defined

H(A∣B)ρ ∶=H(AB)ρ −H(B)ρ. (2.10)

The conditional von Neumann entropy satisfies the following chain rule:

H(AB∣C) =H(A∣C) +H(B∣AC). (2.11)

It also satisfies the data processing inequality, which states that if one applies a channel
ΦB→B′ to the state ρAB, then the entropy increases, that is

H(A∣B′)Φ(ρ) ≥H(A∣B)ρ. (2.12)

2.3.2. Quantum relative entropy

The quantum relative entreopy, also called the Umegaki relative entropy, can be viewed
as an information theoretic measure of the distance between two states, although it is not
a metric (it is not even symmetric). It plays an important role in information theory and
this thesis specifically. Operationally, it can be interpreted through the task of hypothesis
testing [HP91].

Definition 2.8. The relative entropy between two nonzero positive semidefinite operators P
and Q is given by

D(P ∣∣Q) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

tr(P logP−P logQ)
tr(P ) if (P ≪ Q)

∞ else.
(2.13)
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The relative entropy can be viewed as the parent quantity for the von Neumann entropy.
In particular, we have that for a state ρAB

H(A∣B)ρ = −D(ρAB ∣∣1A⊗ρB) (2.14)

= sup
σB

−D(ρAB ∣∣1A⊗σB) (2.15)

where the supremum in the last line is over all states σB on the register B.

The relative entropy also satisfies a data processing inequality. For any channel Φ and
positive operators P and Q, we have

D(P ∣∣Q) ≥D(Φ(P )∣∣Φ(Q)). (2.16)

In this thesis, we will also need the measured relative entropy Dm.

Definition 2.9. The measured relative entropy between two nonzero positive semidefinite
operators P and Q is given by

Dm(P ∣∣Q) ∶= sup
M

D(M(P )∣∣M(Q)) (2.17)

where the supremum is taken over all measurement channelsM, that is, channels such that
M(ρ) = ∑x∈X tr(Mxρ) ∣x⟩ ⟨x∣ for some POVM elements (Mx)x and an alphabet X .

Due to the data processing inequality, we have

Dm(P ∣∣Q) ≤D(P ∣∣Q) (2.18)

for all positive operators P and Q.

2.3.3. Mutual information

The mutual information between two registers for a state provides a measure of the
correlations between them.

Definition 2.10. For a state ρAB the mutual information between registers A and B is
defined as

I(A ∶ B)ρ ∶=D(ρAB ∣∣ρA ⊗ ρB). (2.19)

Operationally, it characterises the entanglement-assisted capacity for communication over
a channel (see, for example [Wil13, Theorem 21.3.1]).
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2.3.4. Rényi relative entropies

We follow the notation in Tomamichel’s book [Tom16] for Rényi entropies. These en-
tropies are necessary for understanding information tasks in the one-shot regime.

Definition 2.11 ( [MLDS+13,WWY14]). The sandwiched α-Rényi relative entropy for
α ∈ [1

2 ,1) ∪ (1,∞] between the positive operator P and Q is defined as

D̃α(P ∣∣Q) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
α−1 log tr(Q−α′/2PQ−α′/2)α

tr(P ) if (α < 1 and P Ù Q) or (P ≪ Q)

∞ else.
(2.20)

where α′ = α−1
α .

Definition 2.12 ( [Pet86]). For α ∈ [0,1)∪(1,2], the Petz α-Rényi relative entropy between
the positive operators P and Q is defined as

D̄α(P ∣∣Q) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
α−1 log tr(PαQ1−α)

tr(P ) if (α < 1 and P Ù Q) or (P ≪ Q)

∞ else.
(2.21)

In the limit α → ∞, the sandwiched relative entropy becomes equal to the max-relative
entropy, Dmax, which can equivalently be defined as follows.

Definition 2.13. The max-relative entropy between two positive operator P and Q is defined
as

Dmax(P ∣∣Q) ∶= inf {λ ∈ R ∶ P ≤ eλQ} . (2.22)

Both D̃α and D̄α are monotonically increasing in α. In the limit of α → 1, both the Petz
and the sandwiched relative entropies equal the quantum relative entropy, D(P ∣∣Q).

For α in their range of definition, both the Petz and the sandwiched Rényi relative
entropies satisfy the data processing inequality, that is, for all quantum channels Φ and
positive operators P and Q, we have

D̃α(P ∣∣Q) ≥ D̃α(Φ(P )∣∣Φ(Q)) (2.23)

D̄α(P ∣∣Q) ≥ D̄α(Φ(P )∣∣Φ(Q)). (2.24)

Finally, we note that these relative entropies satisfy

D̃α(P ∣∣Q) ≤ D̄α(P ∣∣Q) (2.25)

for all α ∈ [0,2] and positive operators P and Q.
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2.3.5. Rényi conditional entropies

We can use the relative entropies defined above to define conditional entropies, similar
to how the von Neumann conditional entropy is derived from the relative entropy (Eq. 2.14
and 2.15).

Definition 2.14. For the subnormalised state ρAB, we can define the sandwiched Rényi
conditional entropies as

H̃↑α(A∣B)ρ ∶= sup
σB

−D̃α(ρAB ∣∣1A⊗σB) (2.26)

H̃↓α(A∣B)ρ ∶= −D̃α(ρAB ∣∣1A⊗ρB) (2.27)

for α ∈ [1
2 ,1) ∪ (1,∞] and the Petz Rényi conditional entropies as

H̄↑α(A∣B)ρ ∶= sup
σB

−D̄α(ρAB ∣∣1A⊗σB) (2.28)

H̄↓α(A∣B)ρ ∶= −D̄α(ρAB ∣∣1A⊗ρB) (2.29)

for α ∈ [0,1) ∪ (1,2]. The supremum in the definition for H̃↑α and H̄↑α is over all quantum
states σB on register B.

In the limit α → 1, all four of these conditional entropies converge to the von Neumann
conditional entropy H(A∣B).

These conditional entropies satisfy a data processing inequality similar to the von Neu-
mann entropy (see, for example [Tom16, Corollary 5.1]). For a channel ΦB→B′ and state
ρAB, we have

Hα(A∣B′)Φ(ρ) ≥ Hα(A∣B)ρ (2.30)

where Hα can be any one of {H̄↑α, H̄
↓
α, H̃

↑
α, H̃

↓
α} for α lying in the appropriate domain of

definition for the entropy.

2.3.6. Min-entropy

The conditional entropy H̃↑∞ is called the min-entropy and is usually written as Hmin. It
characterises the amount of randomness one can extract from a classical register which is
correlated to an adversary’s register. It can be equivalently defined as:

Definition 2.15 ( [Ren06]). For a subnormalised state ρAB, the min-entropy of register A
given register B is defined as

Hmin(A∣B)ρ ∶= sup{λ ∈ R ∶ there exists state σB such that ρAB ≤ e−λ 1A⊗σB} . (2.31)
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Another version of the min-entropy, that will be relevant in this thesis is given by H̃↓∞.
We denote it here using H↓min. It can alternatively be defined as:

Definition 2.16. For a subnormalised state ρAB, the H↓min of register A given register B is
defined as

H↓min(A∣B)ρ ∶= sup{λ ∈ R ∶ ρAB ≤ e−λ 1A⊗ρB} (2.32)

= − log ∥ρ
− 1

2
B ρABρ

− 1
2

B ∥
∞

(2.33)

For a classical distribution pAB, the min-entropies above simplify to

Hmin(A∣B)p = − log∑
b

p(b)max
a
p(a∣b) (2.34)

H↓min(A∣B)p = − log max
a,b

p(a∣b). (2.35)

The expressions for these entropies in the classical case clearly demonstrates the difference
between Hmin and H↓min. Since Hmin is the negative log of the guessing probability [KRS09],
it averages over the values of B. Whereas H↓min selects the worst possible value of B and
then calculates the guessing probability for this value.

2.3.7. Max-entropy

The conditional entropy H̃↑1/2 is called the max-entropy and is usually written as Hmax.
The max-entropy essentially characterises the performance of source and channel coding in
the one-shot setting.

Definition 2.17. For a subnormalised state ρAB, the max-entropy of register A given register
B is defined as

Hmax(A∣B)ρ ∶= sup
σB

logF (ρAB,1A⊗σB). (2.36)

2.3.8. Smoothed entropies

Typically in applications, one uses smoothed versions of one-shot entropies. This allows
one to consider finite error for applications, and it also results in tighter bounds.

We begin by defining an ε-ball around a state.
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Definition 2.18. For a subnormalised state ρ, and 0 ≤ ε <
√

tr(ρ), we define the ε-ball
around ρ as

Bε(ρ) ∶= {ρ̃ ≥ 0 ∶ P (ρ, ρ̃) ≤ ε and tr ρ̃ ≤ 1}. (2.37)

Using this, we define smoothed versions of Dmax, Hmin, H↓min and Hmax as follows.

Definition 2.19. We define the smooth max-relative entropy between a subnormalised state
ρ and a positive operator Q for 0 ≤ ε <

√
tr(ρ) as

Dε
max(ρ∣∣Q) ∶= inf

ρ̃∈Bε(ρ)
Dmax(ρ̃∣∣Q). (2.38)

Definition 2.20 ( [Ren06]). For a subnormalised state ρAB, and 0 ≤ ε <
√

tr(ρ), we define
the smooth min-entropy of register A given register B as

Hε
min(A∣B)ρ ∶= sup

ρ̃∈Bε(ρ)
Hmin(A∣B)ρ̃. (2.39)

Definition 2.21. For a subnormalised state ρAB, and 0 ≤ ε <
√

tr(ρ), we define the H↓,εmin of
register A given register B as

H↓,εmin(A∣B)ρ ∶= sup
ρ̃∈Bε(ρ)

H↓min(A∣B)ρ̃. (2.40)

Definition 2.22. For a subnormalised state ρAB, and 0 ≤ ε <
√

tr(ρ), we define the smooth
max-entropy of register A given register B as

Hε
max(A∣B)ρ ∶= inf

ρ̃∈Bε(ρ)
Hmax(A∣B)ρ̃. (2.41)

[TRSS10, Lemma 20] relates the two smooth min-entropies above as:

Hε
min(A∣B)ρ − log (

2
ε2
+

1
1 − ε) ≤H

↓,2ε
min(A∣B)ρ ≤H

2ε
min(A∣B)ρ. (2.42)

We primarily use Hε
min as the smooth min-entropy in this thesis. In Chapter 5, we work

with H↓,εmin to establish a universal chain rule for the smooth min-entropy.

The following lemma (originally proven in [TCR09]) relates the smooth min and max-
entropies with the Rényi conditional entropies.

Lemma 2.23 ( [DFR20, Lemma B.10]). For a quantum state ρ and α ∈ (1,2] and ε ∈ (0,1),
we have

Hε
min(A∣B) ≥ H̃↑α(A∣B)ρ −

g(ε)

α − 1 (2.43)

Hε
max(A∣B) ≤ H̃↓1/α(A∣B)ρ +

g(ε)

α − 1 (2.44)
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for g(ε) ∶= − log(1 −
√

1 − ε2).

This lemma also shows that for α ∈ (1,2] the sandwiched conditional entropy H̃↑α behaves
like the min-entropy, whereas for α ∈ [1/2,1), it behaves like the max-entropy.

One of the key advantages of smoothing is that for a given ε, the regularisations of
the smoothed quantities equal their von Neumann counterparts [TCR09,Tom12,TH13].
Specifically,

1
n
Dε

max(ρ
⊗n∣∣σ⊗n) =D(ρ∣∣σ) (2.45)

1
n
Hε

min(A
n
1 ∣B

n
1 )ρ⊗nAB =H(A∣B)ρ (2.46)

1
n
Hε

max(A
n
1 ∣B

n
1 )ρ⊗nAB =H(A∣B)ρ (2.47)

This allows one to derive the i.i.d. results as special cases of their one-shot generalisations.

2.4. Privacy amplification
Privacy amplification is one of the most important primitives in cryptography. It allows a

party holding a string, which might be correlated with an adversary’s information, to extract
a key that is completely random from the adversary’s viewpoint. This primitive is often used
at the end of cryptographic protocols like QKD. The amount of randomness, which can be
extracted from a register is quantified by the smooth min-entropy as the leftover hashing
lemma shows below.

Definition 2.24. A family of functions F from register X to Z is called two universal if for
all x ≠ x′ and a F ∈ F chosen uniformly at random, we have

Pr[F (x) = F (x′)] ≤
1
∣Z ∣

. (2.48)

Lemma 2.25 (Leftover hashing lemma [RK05,TRSS10]). For a set of 2-universal hash
functions F from A to Z and a classical-quantum state ρAE = ∑a p(a) ∣a⟩ ⟨a∣ ⊗ ρ

(a)
E , let ρZEF

be the state produced by applying a random hash function F ∈ F to register A to produce the
output register Z. This state satisfies

1
2 ∥ρZEF − τZ ⊗ ρEF ∥ ≤ 2ε + e 1

2 (log ∣Z∣−Hε
min(A∣E)) (2.49)

where τZ ∶= 1
∣Z∣ 1Z is the completely mixed state on register Z.
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So, if one chooses a family of hash functions with output length ∣Z ∣ = Hε
min(A∣E)ρ −

2 log 1/ε, the output state ρZEF is 3ε close to τZ ⊗ ρEF . Thus, one can extract Hε
min(A∣E)ρ −

O(1) amount of randomness independent of the adversary for the state ρ.

2.5. Substate theorem
The quantum substate theorem stated below is one of the major results used to bound

the smooth max-relative entropy in this thesis. This theorem serves as a tool to convert
bounds on the measured relative entropy to bounds on the smooth max-relative entropy.

Theorem 2.26 (Quantum substate theorem [JRS02,JN11]). Let ρ and σ be two normalised
states on the same Hilbert space. Then for any ε ∈ (0,1), we have

D
√
ε

max(ρ∣∣σ) ≤
Dm(ρ∣∣σ) + 1

ε
+ log 1

1 − ε. (2.50)

Usually, the above theorem is stated with the relative entropy D(ρ∣∣σ) on the right-hand
side instead of the measured relative entropy Dm(ρ∣∣σ). Since, in the proofs in Chapter 5
we are only able to derive bounds on the measured relative entropy, we need the stronger
version stated above. It is, therefore, instructive to understand how it is possible to use
Dm(ρ∣∣σ) in the bound above.

[JRS02,JN11] actually prove a bound on D
√
ε

max(ρ∣∣σ) in terms of a divergence they call
the observational divergence Dobs, which is defined as

Dobs(ρ∣∣σ) ∶= sup{tr(Pρ) log tr(Pρ)
tr(Pσ) ∶ for 0 ≤ P ≤ 1 such that tr(Pσ) ≠ 0} . (2.51)

[JN11, Theorem 1] proves that

D
√
ε

max(ρ∣∣σ) ≤
Dobs(ρ∣∣σ)

ε
+ log 1

1 − ε. (2.52)

Observe that for any binary measurement (P,1−P ), we have

Dm(ρ∣∣σ) ≥ tr(Pρ) log tr(Pρ)
tr(Pσ) + (1 − tr(Pρ)) log 1 − tr(Pρ)

1 − tr(Pσ)

≥ tr(Pρ) log tr(Pρ)
tr(Pσ) + (1 − tr(Pρ)) log (1 − tr(Pρ))

≥ tr(Pρ) log tr(Pρ)
tr(Pσ) − 1

which implies, that

Dobs(ρ∣∣σ) ≤Dm(ρ∣∣σ) + 1. (2.53)
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This allows us to use Dm(ρ∣∣σ) in the bound for the substate theorem.

2.6. Entropy accumulation theorem (EAT)
As mentioned in Chapter 1, unlike the von Neumann entropy, one cannot generally

decompose the smooth min-entropy of an n-partite system into the smooth min-entropies of
its n subsystems. The entropy accumulation theorem (EAT) [DFR20] allows one to break
the smooth min-entropy of a large system produced by a sequential process into the sum of
its parts, like a chain rule, under certain conditions. This technique is very powerful and
allows one to adapt security proofs based on the i.i.d. assumption to the one-shot setting.
As a result, it is able to provide tight bounds on the rates of cryptographic applications.

2.6.1. Quantum Markov chains

EAT requires certain Markov chain conditions to be true. We begin by defining a Markov
chain.

Definition 2.27. A state ρABC is said to obey the Markov chain A↔ B ↔ C if there exist
Hilbert spaces {aj}j and {cj}j such that B satisfies the following isomorphism under the
isometry V ∶ B → (⊕j aj) ⊗ (⊕k ck)

B ≅⊕
j

aj ⊗ cj

and

V ρABCV
† =⊕

j

ρAaj ⊗ ρcjC .

Equivalently, ρABC satisfies A↔ B ↔ C if and only if I(A ∶ C ∣B)ρ = 0.

For a state ρABC satisfying the Markov chain A ↔ B ↔ C, the information theoretic
characterisation I(A ∶ C ∣B)ρ = 0 implies that the register C holds no information about
register A in addition to the information contained in register B.

2.6.2. Overview

The entropy accumulation theorem (EAT) [DFR20] provides a tight and simple lower
bound for the smooth min-entropy Hε

min(A
n
1 ∣B

n
1E)ρ of sequential processes, under certain

Markov chain conditions. The state ρAn1Bn1E in the setting for EAT is produced by a
sequential process of the form shown in Fig. 2.1. The process begins with the registers R0

and E. In the context of a cryptographic protocol, the register R0 is usually held by the
honest parties, whereas the register E is held by the adversary. Then, in each round k ∈ [n]

25



Fig. 2.1. The setting for the entropy accumulation theorem.

of the process, a channel Mk ∶ Rk−1 → AkBkRk is applied on the register Rk−1 to produce
the registers Ak,Bk and Rk. The registers An1 usually contain a partially secret raw key and
the registers Bn

1 contain the side information about An1 revealed to the adversary during the
protocol. It can be seen that for cryptographic applications if one can prove a lower bound
for Hε

min(A
n
1 ∣B

n
1E), then one can also create secret key of almost the same length using

privacy amplification.

EAT requires that for every k ∈ [n], the side information Bk satisfies the Markov chain
Ak−1

1 ↔ Bk−1
1 E ↔ Bk, that is, the side information revealed in the kth round does not reveal

anything more about the secret registers of the previous rounds than was already known to
the adversary through Bk−1

1 E. Under this assumption, EAT provides a lower bound for the
smooth min-entropy. We state the result in the following theorem.

Theorem 2.28 ( [DFR20]). If a state ρAn1Bn1E = Mn ○⋯ ○M1(ρ
(0)
R0E

) produced through the
sequential process shown in Fig. 2.1, satisfies the Markov chain conditions Ak−1

1 ↔ Bk−1
1 E ↔

Bk for every k ∈ [n], then

Hε
min(A

n
1 ∣B

n
1E)ρ ≥

n

∑
k=1

inf
ωRk−1R̃

H(Ak∣BkR̃)Mk(ω) − c
√
n (2.54)

where the infimum is taken over all input states to the channels Mk and c > 0 is a constant
depending only on ∣A∣ (size of registers Ak) and ε.

2.6.3. EAT with testing

EAT is usually applied while conditioning on the outcome of certain statistics. This
helps ensure that the infimums occuring in the right-hand side of the bound in Eq. 2.54 are
non-zero. We present the framework for testing in EAT here and restate the theorem with
testing as Theorem 2.30. We use the same framework for our approximate generalisations
of the theorem as well.
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In this section, we will consider the channelsMk which map registers Rk−1 to AkBkXkRk

such that Xk is a classical value which is determined using the registers Ak and Bk (We
assume that all Xk have the same alphabet X ). Concretely, suppose that for every k, there
exist a channel Tk ∶ AkBk → AkBkXk of the form

Tk(ωAkBk) = ∑
y,z

Π(y)
Ak

⊗Π(z)
Bk
ωAkBkΠ

(y)
Ak

⊗Π(z)
Bk

⊗ ∣f(y,z)⟩ ⟨f(y,z)∣Xk (2.55)

where {Π(y)
Ak

}y and {Π(z)
Bk

}z are orthogonal projectors and f is some deterministic function
which uses the measurement results y and z to create the output register Xk. We assume
that everyMk = Tk ○M

(0)
k .

Let P be the set of probability distributions over the alphabet of X registers, X . Let
R be any register isomorphic to Rk−1. For a probability q ∈ P and a channel N k ∶ Rk−1 →

AkBkXkRk, we define the set of states

Σk(q∣N k) ∶= {νAkBkXkRkR = N k(ωRk−1R) ∶ for a state ωRk−1R such that νXk = q} (2.56)

as the states that are compatible with the output distribution q on register Xk when input
to the channel N k.

We use this notation to define a min tradeoff function, which will be used to bound the
min-entropy in the theorem.

Definition 2.29. A function f ∶ P → R is called a min-tradeoff function for the channels
{N k}nk=1 if for every k ∈ [n], it satisfies

f(q) ≤ inf
ν∈Σk(q∣N k)

H(Ak∣BkR)ν . (2.57)

For a string xn1 ∈ X n, we define its frequency distribution freq(xn1) ∈ P as

freq(xn1)(a) ∶=
∣{i ∈ [n] ∶ xi = a}∣

n
. (2.58)

With the above definitions and notation in hand we can state the entropy accumulation
theorem in its full generality.

Theorem 2.30 ( [DFR20, Theorem 4.4]). Let the channels {Mi}ni=1 be as described above
and the state ρAn1Bn1Xn

1 E
∶= Mn ○⋯○M1(ρ

(0)
R0E

) be produced through a sequential process similar
to Fig. 2.1. Suppose, ρ satisfies the Markov chain conditions Ak−1

1 ↔ Bk−1
1 E ↔ Bk for every

k ∈ [n]. Let f be an affine min-tradeoff function for all the channels {Mi}ni=1 and let 0 < ε < 1.
Then, for any event Ω ⊆ X n such that for every xn1 ∈ Ω, f(freq(xn1)) ≥ h, we have

Hε
min(A

n
1 ∣B

n
1E)ρ∣Ω ≥ nh − c

√
n
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for c = 2 (log(1 + 2∣A∣) + ∥∇f∥∞ + 1)
√

1 − 2 log(εPrρ(Ω)), where ∣A∣ is the maximum dimen-
sion of the systems Ai and Prρ(Ω) is the probability of the event Ω for the state ρ.

The entropy accumulation theorem is fairly general and has found many appli-
cations in cryptography. It has been applied to prove the security of sequential DI-
QKD [AFDF+18], randomness expansion [AFRV19], to prove bounds on quantum
random access codes [DFR20], and also to prove bounds on Lyapunov exponents [SFR21].

Using recently proven chain rules [FF21] for channel sandwiched Rényi relative entropies,
[MFSR24] have been able to relax the Markov conditions required in the theorem above.
Their generalized entropy accumulation theorem allows for the adversary’s registers to also
evolve in every round. The only condition, imposed on the channels, Mi, is that they
satisfy a kind of non-signalling property for channels, which requires that information is not
leaked by the honest parties devices to the adversary. This generalisation can be applied
to scenarios like blind randomness generation [MS17,FM18,MFSR24,MR22], where one
cannot apply the original entropy accumulation theorem because the Markov condition is
not satisfied.

2.7. Quantum key distribution (QKD)
Key distribution is a primitive in cryptography, which allows two honest parties, Alice

and Bob to share a secret key in the presence of an adversary, Eve. Classically, key
distribution cannot be accomplished without some assumption on the capabilities of the
adversary. Typically, it is assumed that a certain problem is computationally “hard” even
for the adversary. However, quantum mechanics allows two parties to implement key
distribution unconditionally [BB84,Ben92,SP00]. These quantum key distribution (QKD)
protocols rely on the fact that it is not possible to measure an unknown quantum state
without disturbing it.

We will discuss (a variant of) the BB84 protocol in detail in order to understand QKD.
It is presented as Protocol 2.1. For the protocol, it is assumed that Alice and Bob have
access to a classical authenticated channel and a (insecure) quantum channel. In particular,
Eve can access and arbitrarily modify the states sent over the quantum channel, but she
cannot change the contents of the classical authenticated channel. She can only read these
contents.
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BB84 QKD protocola

Parameters:
– n is the number of qubits sent
– µ ∈ (0,1) is the probability of measurement in the X basis {∣+⟩ , ∣−⟩}.
– e ∈ (0, 1

2) is the maximum error tolerated
Protocol:

(1) For every 1 ≤ i ≤ n perform the following steps:
(a) Alice chooses a random bit bi and with probability 1 − µ encodes it in the

Z basis and with probability µ in the X basis.
(b) Alice sends her encoded qubit to Bob.
(c) Bob measures the qubit in the Z basis with probability 1 − µ and X basis

with probability µ. He records the output as b′i.
(2) Sifting: Alice and Bob share their choice of bases for all the rounds and discard

the rounds where their choices are different. We use X (Z) to denote the set of
indices where Alice encoded the bit in basis X (Z) and Bob measured it in the
X (Z) basis.

(3) Parameter estimation: Alice and Bob announce their string bX and b′X (bi’s
for the set X ) and compute ê = 1

∣X ∣ ∑i∈X bi ⊕ b
′
i. They abort if ê > e.

(4) Information reconciliation: Alice and Bob use an information reconciliation
procedure, which lets Bob obtain a guess for Alice’s raw key b̂Z (if the information
reconciliation protocol succeeds b̂Z = bZ).

(5) Raw key validation: Alice selects a random hash function from a 2-universal
family and sends it along with hash(bZ) to Bob. If hash(bZ) ≠ hash(b̂Z) Bob
aborts the protocol.

(6) Privacy amplification: Alice and Bob use a privacy amplification protocol to
create a secret key.

aStrictly speaking, this is a modern variant of the BB84 protocol. However, we will refer to it as the
BB84 protocol for this thesis.

Protocol 2.1

The protocol uses classical bits {0,1} encoded in the X basis (as the states {∣+⟩ , ∣−⟩}) and
Z basis (as the states {∣0⟩ , ∣1⟩}) (also see [Wie83]). In a single step of the protocol, Alice
randomly chooses a bit bi and encodes it randomly in the X or Z basis. She then sends her
qubit to Bob, who randomly measures it in the X or Z basis. If Bob measures the qubit in
the same basis in which Alice encoded it, then he would also measure the bit bi assuming no
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adversary or noise interferes with the protocol. This step is repeated multiple times during
the protocol. Then Alice and Bob publicly share their bases choices and discard the rounds
where Bob’s measurement basis do not match Alice’s encoding basis. They use the rounds,
where Alice encoded using the X basis to estimate the noise during the protocol. If the
noise is higher than a certain threshold, they abort. In order for Eve to gain information
about Alice’s raw key bZ , Eve has to interact with the qubits sent by Alice. The idea for
proving security for this QKD protocol is that if Eve interferes too much with Alice’s qubits,
then the noise measured by Bob is high. Otherwise, the amount of information gained by
Eve is small enough that Alice and Bob can extract a secret key. Alice and Bob perform
information reconciliation and key validation after parameter estimation to make sure that
they hold the same strings. At this point, Eve may have partial information about these
strings. So, in the final stage of the protocol, Alice and Bob use privacy amplification
with appropriate parameters to make the keys independent of Eve’s state. We describe this
classical post-processing in more detail in Sec. 2.7.2.

2.7.1. Security definition for QKD

In a QKD protocol, Alice and Bob are honest parties and Eve is considered to be an
adversarial eavesdropper. Alice and Bob have access to a classical public authenticated
channel. In addition, they have access to an unsecure quantum channel. As mentioned
above, the attack model we consider for QKD is that Eve can arbitrarily modify the messages
sent over the quantum channel. At the end of the protocol, Alice receives the key KA and
Bob the key KB and suppose that Eve holds the register E. All three parties also receive an
abort flag.

Definition 2.31 (Security of QKD [PR14]). A QKD protocol is said to be (εc, εs)-secure if
for every strategy of the adversary, Eve, the following two properties hold:

(1) Correctness: Alice and Bob’s keys are equal with a high probability(1)

Pr[KA ≠KB] ≤ εc. (2.59)

(2) Secret: Alice’s key is almost uniform and independent of Eve’s registers

Pr(¬abort)
2 ∥ρKAE∣¬abort −

1
∣KA∣

∑
k

∣k⟩ ⟨k∣ ⊗ ρE∣¬abort∥
1
≤ εs. (2.60)

We note that a QKD protocol which is secure according to the definition above can be
securely composed with other protocols [PR14].

(1)Note that we can assume that Alice and Bob trivially output the same key when the protocol aborts.
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2.7.2. Classical post-processing and QKD proof requirements

Information reconciliation, raw key validation, and privacy amplification are used to
process the raw keys created by Alice and Bob’s measurement outcomes in QKD protocols
like Protocol 2.1. We provide a brief description of these protocols and how they are used in
QKD. For more details, we refer the reader to [Ren06, Chapter 6] and [AF20, Section 4.2.2].

An information reconciliation (IR) protocol [BS94] allows two parties holding correlated
strings to derive a common string, while minimising communication. Raw key validation
simply uses a random hash function from a 2-universal family to verify that Alice and Bob
hold the same raw key. Raw key validation is often included in the information reconciliation
protocol itself. We describe it as a separate step here, since it makes correctness evident
and aids our explanation.

[Ren06, Lemma 6.3.4] demonstrates a one-way protocol from Alice to Bob for which
the number of bits communicated during information reconciliation and raw key validation,
which we will simply refer to as leakIR, can be bounded as

leakIR ≤Hε
max(X ∣Y ) +O(1) (2.61)

where X and Y are Alice and Bob’s raw keys respectively, and the parameter ε ∈ [0,1].

In QKD protocols, information reconciliation ensures correctness. For example, in
Protocol 2.1, adversarial interference and noise may cause the raw keys generated by Alice
and Bob to be unequal. Through information reconciliation, Bob can adjust his raw key to
match Alice’s.

Privacy amplification, described in Sec. 2.4, allows Alice and Bob to extract a random
secret key from their shared raw key obtained through information reconciliation. The
process involves selecting a random 2-universal hash function and applying it to their raw
key. When parameters are appropriately chosen, Lemma 2.25 guarantees that the resulting
key is independent of the adversary’s state.

Let’s suppose that Alice and Bob’s raw keys before applying classical post-processing
are An1 and Bn

1 , and Eve’s state is E. If Alice sends message C to Bob during information
reconciliation and raw key validation, then according to Lemma 2.25, the QKD protocol’s
key length is lower bounded (up to a constant) by:

Hε
min(A

n
1 ∣EC)ρ ≥H

ε
min(A

n
1 ∣E)ρ − leakIR (2.62)
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using the dimension bound [Tom16, Lemma 6.8]. The information reconciliation cost can
be bounded as

leakIR ≤Hε′

max(A
n
1 ∣B

n
1 )ρhonest +O(1). (2.63)

Hε′
max in the bound above is evaluated on ρhonest, which represents the state produced at the

end of the QKD rounds in the absence of an adversary. In the presence of an adversary, this
amount of communication may not suffice for successful information reconciliation, and in
that case the raw key validation step would fail with high probability (see [Ren06, Section
6.3] for a detailed discussion), which is permissible according to the security definition.

This term is typically straightforward to bound as the form of ρhonest is known. It can
usually be expressed as nf(e), where e quantifies the protocol noise and f is a small function
such that f(e) → 0 as e→ 0. Therefore, while proving security for QKD, the main challenge
lies in establishing a linear lower bound for Hε

min(A
n
1 ∣E)ρ in cases where the protocol does

not abort.

If one is able to prove that

Hε
min(A

n
1 ∣E)ρ −H

ε′

max(A
n
1 ∣B

n
1 )ρhonest ≥ rn −O(1) (2.64)

for some r > 0, then Alice and Bob can produce a secure key of length (rn−O(1)) according
to Lemma 2.25. The key rate for a QKD protocol is defined as its key length divided by the
number of rounds. In this case, it asymptotically tends to r.

2.8. Device-independent quantum key distribution
(DIQKD)

The security of QKD protocols, like BB84, can be mathematically proven. However,
practical implementations of these QKD protocols are vulnerable to side-channel attacks,
where Eve exploits imperfections in the preparation and detection devices to extract
additional information [LWW+10,SRK+15]. For example, Eve could send a laser signal
towards Alice’s preparation equipment, and analyse its reflection to determine the prepara-
tion bases, potentially compromising the protocol’s security. These attacks stem from the
impossibility of completely and accurately modelling Alice and Bob’s devices. To circumvent
such problems, device-independent QKD (DIQKD) [MY98, MY04, BHK05, PAB+09]
(also see [Eke91]) has been developed. DIQKD protocols allow Alice and Bob to use
untrusted devices (or equivalently, devices prepared by the eavesdropper) to implement
key distribution. The security of such protocols relies solely on the properties of quantum
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mechanics.

Typically, in such protocols, Alice and Bob play multiple non-local games using some
shared quantum state. A non-local game is defined as:

Definition 2.32 (Non-local game). A non-local game G = (X ,Y,A,B,ΠXY , V ) is a game
played between two cooperating parties called Alice and Bob, who are not allowed to com-
municate while playing the game. Questions x ∈ X and y ∈ Y are sampled according to the
distribution ΠXY and distributed to Alice and Bob respectively. Alice and Bob reply with
answers a ∈ A and b ∈ B using some predetermined strategy. Their strategy can be classical,
in which case their answers depend only on their questions and some shared randomness, or
it can be quantum, in which case they measure some pre-shared quantum state to determine
their answers. Alice and Bob win the game if they satisfy the predicate V (x, y, a, b). The
maximum winning probability for classical strategies is denoted using ωc(G) and for quantum
strategies using ωq(G).

One of the most prominent examples of a non-local game is the CHSH game [CHSH69].
For the CHSH game, we have X = Y = A = B = {0,1}, ΠXY is the uniform distribution
on all possible questions and the predicate V (x,y,a,b) = ¬[a ⊕ b ⊕ (x ∧ y)]. For this
game, ωc(G) = 3

4 and ωq(G) = 2+
√

2
4 . The ideal quantum strategy uses a Bell state

between Alice and Bob, and projective measurements for Alice and Bob (see for exam-
ple [Wat18, Example 6.59]). This strategy is also unique up to isometries [SW88,MYS12].

The existence of non-local games which one can win with a higher probability using
quantum mechanics than with classical strategies is one of the most celebrated results in
quantum information. It provides a means to test the quantumness of our reality. Moreover,
if two parties sharing a quantum state are able to win such a game with a probability
exceeding the classical winning probability, then one can place bounds on the amount
of information any third party has about their answers to the game, irrespective of the
imperfections in the measurement devices used during the game [MAG06,MS17,BFF21].
This fact is used to ensure the security of DIQKD protocols.

During a DIQKD protocol, Alice and Bob treat their measurement devices and quantum
states as black boxes that produce outputs corresponding to the inputs of the non-local
game. If the games for a DIQKD protocol are played sequentially, that is the inputs for
the (k + 1)th game are provided to the devices after the answers for the kth game are
provided by the device, then we call the protocol sequential. It should be noted that for
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these protocols, in general, after each round of the protocol, Alice and Bob’s questions
are revealed to Eve and the state Eve chooses for the next round can depend on these
questions too. In particular, the answers for the kth round of the game depend only on
the questions in the previous rounds. Sequential protocols are a good model for DIQKD
protocols, which distribute ‘entanglement on the fly’. As we will see these DIQKD protocols
are well understood and their rates are close to optimal.

On the other hand, if the protocol assumes that Alice and Bob submit all questions to
their devices at the same time and then the device uses all of them to produce the answers,
the protocol is termed parallel. In a parallel protocol, the answers for the kth round of the
game can depend on the questions for all the rounds. This makes their analysis much more
difficult.

In the following, we will discuss the security definition for DIQKD. We also present a
sequential DIQKD protocol and sketch its proof of security using entropy accumulation.
These largely follow [AF20]. We present a parallel DIQKD protocol along with a proof of
security in Chapter 6.

2.8.1. Security definition for DIQKD

The security definition for DIQKD is the same as that for QKD (also see [AF20, Section
11.3]). The key distinction lies in the attack model considered for the adversary, Eve.
In standard QKD, the quantum devices used by Alice and Bob in their laboratories
are assumed to be honest and behave exactly as specified. In contrast, DIQKD as-
sumes these quantum devices are untrusted. Concretely speaking, the adversary is allowed
to choose both the quantum devices used by Alice and Bob and their shared quantum states.

On the other hand, similar to QKD, Alice and Bob both have access to trusted classical
devices for post-processing and generating randomness, as well as an authenticated classical
channel. Finally, we assume that Alice and Bob can prevent information from leaking from
their laboratories to Eve (this assumption is necessary, as otherwise Eve could simply obtain
Alice’s key even after successful protocol execution; also see [AF20, Section 4.2.5]).

2.8.2. Protocol for sequential DIQKD

The sequential DIQKD protocol used in [AF20] is presented as Protocol 2.2. For this
protocol, Bob uses a quantum device, which can take questions from {0,1,2} and produce
corresponding answers. In the absence of an adversary, Alice and Bob share a Bell state.
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Sequential DIQKD protocol

Parameters:
– n ≥ 1 is the number of rounds in the protocol
– γ ∈ (0,1] is the fraction of test rounds
– ωexp is the winning threshold for the CHSH games

Protocol:
(1) For every 1 ≤ i ≤ n perform the following steps:

(a) Alice sends one half of a Bell state to Bob.
(b) Alice chooses a random Ti ∈ {0,1} such that Pr[Ti = 1] = γ.
(c) Alice sends Ti to Bob.
(d) If Ti = 0, Alice and Bob set the questions (Xi,Yi) = (0,2), otherwise they

sample (Xi,Yi) uniformly at random from {0,1}.
(e) Alice and Bob use their device with the questions (Xi,Yi) and obtain the

outputs Ai,Bi.
(2) Alice announces her questions Xn

1 to Bob.
(3) Information reconciliation: Alice and Bob use an information reconciliation

protocol, which lets Bob obtain the raw key Ãn1 (if the information reconcilia-
tion protocol succeeds An1 = Ãn1 ). In case the information reconciliation protocol
aborts, they abort the QKD protocol too.

(4) Parameter estimation: Bob uses Bn
1 and Ãn1 to compute the average winning

probability ωavg on the test rounds. He aborts if ωavg < ωexp.
(5) Privacy amplification: Alice and Bob use a privacy amplification protocol to

create a secret key K from An1 (using Ãn1 for Bob).

Protocol 2.2

They use the measurements for the optimal strategy for the CHSH game when given questions
in {0,1}. For the question y = 2, Bob’s device should measure the Bell state using the same
measurement it uses for Alice’s question x = 0, so that Alice and Bob’s measurements are
perfectly correlated for the question (x,y) = (0,2). The rounds with this question correspond
to generation rounds, that is, rounds which are used to create the raw key. The rest of the
rounds are used for parameter estimation and are called test rounds. It is noteworthy that
Alice’s device cannot differentiate between a test round and a generation round.
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2.8.3. Proof sketch for sequential DIQKD

Security against i.i.d. attacks

Under the i.i.d. assumption (also called the collective attack case), Eve distributes the
same state for each round of the protocol and chooses the devices such that they use the
same measurement in each round too. This is a highly restrictive model, but it is usually
the first step towards proving a general security proof. The security of DIQKD under this
assumption was proved by [PAB+09]. Their main result was a bound on the von Neumann
entropy of Alice’s answers given Eve’s information for a single round of the CHSH game. We
state this result in the form used by [AF20] here.

Lemma 2.33 ( [AF20, Lemma 5.3]). Suppose that the honest players, Alice and Bob play
the CHSH game with quantum devices provided by the adversary, Eve. Let register E be
Eve’s part of the initial quantum state, X and Y be Alice and Bob’s questions for the game,
and A and B Alice and Bob answers. If the quantum devices provided by Eve win the game
with a probability ω ∈ [3

4 ,
2+

√
2

4 ], we have

H(A∣XY E) ≥ log(2) − h(
1
2 +

1
2
√

16ω(ω − 1) + 3) (2.65)

where h(.) represents the binary entropy function

Under i.i.d. attacks, it is straightforward to see that the parameter estimation step in
Protocol 2.2 allows Alice and Bob to ensure that the state provided to them by Eve wins
the CHSH game with a high probability. Then, security follows simply by using the above
bound along with the equipartition property (Eq. 2.46) for the smooth min-entropy. The
intuition for the security proof against general attacks is similar. However, Alice and Bob
can no longer meaningfully estimate a winning probability for the states distributed between
them, since these could all be different and even be correlated across rounds.

Security against general attacks

In this section, we briefly describe how entropy accumulation (Theorem 2.30) can be
used to prove the smooth min-entropy lower bound required for the security of sequential
DIQKD in the presence of an adversary. We use the variables defined in Protocol 2.2 and
follow the proof given in [AFDF+18].

To establish the security of Protocol 2.2 and show it generates a key of length Ω(n),
we need only prove that the entropy Hε

min(A
n
1 ∣EX

n
1 Y

n
1 T

n
1 ) is lower bounded by Ω(n). The
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information leaked during information reconciliation protocol is small and can be addressed
as described in Sec. 2.7.2.

For brevity, we consider a simpler case of sequential DIQKD, where Eve distributes
the states and devices to Alice and Bob for all the games at the beginning of the proto-
col. The state ρR0E in the entropy accumulation (EAT) setting for this protocol is the
initial quantum state shared between Alice, Bob and Eve. Here the register E contains
information about the initial state kept by Eve. R0 can be decomposed as two registers
EA and EB, where EA is held by Alice and EB by Bob. The channels Mi in the EAT
setting correspond to one round of Step 1 of Protocol 2.2. Therefore, the channel Mi

samples Ti, Xi and Yi and then uses Alice and Bob’s devices to produce the answers Ai
and Bi. In the language of Theorem 2.30, we set Ai ← AiBi, Bi ← TiXiYi, E ← E and
Xi ← V (Xi, Yi,Ai,Bi), where V is the winning predicate for the CHSH game. We condition
the output state on the protocol not aborting. This determines the event Ω in Theorem 2.30.

For a binary probability distribution, q and the channel Mi, the set Σi(q∣Mi) consists
of the set of input states for CHSH strategy used by the channel Mi, which win the game
with probability q(1). Thus, using the single round bound in Lemma 2.33, we have

inf
ν∈Σi(q∣Mi)

H(AiBi∣XiYiTiR̃i−1) ≥ log(2) − h(
1
2 +

1
2
√

16q(1)(q(1) − 1) + 3)

as long as q(1) > 3/4. This bound can be used to derive a min-tradeoff function for EAT.
Since, the protocol aborts when the winning probability on the test rounds is less than ωexp,
we can restrict ourselves to distributions q such that q(1) ≥ ωexp, and it can be shown that(2)

h ∶= log(2) − h(
1
2 +

1
2
√

16ωexp(ωexp − 1) + 3) (2.66)

can be used to lower bound the min-tradeoff function for EAT. Theorem 2.30 then shows
that

Hε
min(A

n
1B

n
1 ∣EX

n
1 Y

n
1 T

n
1 ) ≥ nh −O(

√
n).

We can then use a simple chain rule and the fact that An1 and Bn
1 differ only on a small set

of positions to derive a similar bound for Hε
min(A

n
1 ∣EX

n
1 Y

n
1 T

n
1 ).

(2)We overload the symbol h here, since it is also used to denote the binary entropy function. Its meaning,
however, should be clear from context.
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Chapter 3

Smooth min-entropy lower bounds for
approximation chains

3.1. Introduction
In this chapter, we consider scenarios consisting of approximation chains of a state along

with additional conditions, and prove smooth min-entropy lower bounds for these. The
techniques developed here form the foundation for analysing approximation chains in the
remainder of the thesis.

We begin by considering the scenario of approximately independent registers, that is, a
state ρAn1B, which for every 1 ≤ k ≤ n satisfies

∥ρAk1B − ρAk ⊗ ρAk−1
1 B∥1

≤ ε. (3.1)

for some small ε > 0 and arbitrarily large n (in particular n ≫ 1
ε ). That is, for every k, the

system Ak is almost independent of the system B and everything else which came before
it. For simplicity, let us further assume that for all k the state ρAk = ρA1 . Intuitively, one
expects that the smooth min-entropy (with the smoothing parameter depending on ε and
not on n)(1) for such a state will be large and close to ≈ n(H(A1) − g′(ε)) (for some small
function g′(ε)). However, it is not possible to prove this result using techniques, which rely
only on the triangle inequality and smoothing. The triangle inequality, in general, can only
be used to bound the trace distance between ρAn1B and ⊗nk=1ρAk ⊗ρB by nε, which will result
in a trivial bound when n ≫ 1

ε
(2). Instead, we show that a bound on the entropic distance

(1)The smoothing parameter must depend on ε in such a scenario. This can be seen by considering the
probability distribution PAn

1B
such that B is 0 with probability ε and 1 otherwise and An1 is a random n-bit

string if B = 1 and constant if B = 0.
(2)Consider the distribution QA2n

1 B2n
1
, where for every i ∈ [2n], the bit Bi is chosen independently and

is equal to 0 with probability ε and is 1 otherwise. The bit Ai is chosen randomly if Bi = 1, otherwise it is



given by the smooth max-relative entropy between these two states can be used to prove a
lower bound for the smooth min-entropy in this scenario.

While an upper bound of nε is trivial and meaningless for the trace distance for large n,
it is still a meaningful bound for the relative entropy between two states, which is unbounded
in general. We can show that the above approximation conditions (Eq. 3.1) also imply that
relative entropy distance between ρAn1B and ⊗nk=1ρAk ⊗ ρB is nf(ε) for some small function
f(ε). The substate theorem [JRS02] allows us to transform this relative entropy bound
into a smooth max-relative entropy bound. For two general states ρAB and ηAB, such that
d ∶= Dδ

max(ρAB ∣∣ηAB), we can easily bound the smooth min-entropy of ρ in terms of the
min-entropy of η by observing that

ρAB ≈δ ρ̃AB ≤ edηAB ≤ e−(Hmin(A∣B)η−d) 1A⊗σB (3.2)

for some state σB, which satisfies Dmax(ηAB ∣∣1A⊗σB) = −Hmin(A∣B)η. This implies that

Hδ
min(A∣B)ρ ≥Hmin(A∣B)η −D

δ
max(ρAB ∣∣ηAB) (3.3)

We call this an entropic triangle inequality, since it is based on the triangle inequality property
ofDmax. We can further improve this smooth min-entropy triangle inequality to (Lemma 3.5)

Hε+δ
min(A∣B)ρ ≥ H̃

↑
α(A∣B)η −

α

α − 1D
ε
max(ρAB ∣∣ηAB) −

g1(δ, ε)

α − 1 (3.4)

for some function g1, ε + δ < 1 and 1 < α ≤ 2. Our general strategy for the scenarios
considered in this thesis is to first bound the “one-shot information theoretic” distance (the
smooth max-relative entropy distance) between the real state ρ (ρAn1B in the above scenario)
and a virtual, but nicer state, η (⊗nk=1ρAk ⊗ ρB above) by nf(ε) for some small f(ε). Then,
we use Eq. 3.4 above to reduce the problem of bounding the smooth min-entropy on state ρ
to that of bounding an α-Rényi entropy on the state η. Using this strategy, in Corollary 3.10,
we prove that for states satisfying the approximately independent registers assumptions, we
have for δ = O (ε log ∣A∣

ε ) that

Hδ
1
4

min(A
n
1 ∣B)ρ ≥ n (H(A1)ρ −O(δ

1
4 )) −O (

1
δ3/4) . (3.5)

Another scenario we consider here is that of approximate entropy accumulation. As
discussed in Sec. 2.6, in the setting for entropy accumulation, a sequence of channels
Mk ∶ Rk−1 → AkBkRk for 1 ≤ k ≤ n sequentially act on a state ρ(0)R0E

to produce the state
ρAn1Bn1E =Mn ○⋯○M1(ρ

(0)
R0E

). It is assumed that the channelsMk are such that the Markov

chosen to be equal to Ai−1. In this case, QAk
is the uniformly random distribution for bits and Eq. 3.1 is

satisfied. Let I = ∣{i ∈ [n] ∶ A2i−1 = A2i}∣. Then, for QA2n
1 B2n

1
, this value concentrates around n(1+ε)

2 , whereas
for ∏2n

i=1QAi ⋅QB2n
1
, it concentrates around n

2 . This shows that ∥QA2n
1 B2n

1
−∏2n

i=1QAi ⋅QB2n
1

∥
1
→ 2.
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chain Ak−1
1 ↔ Bk−1

1 E ↔ Bk is satisfied for every k. Under these conditions, the entropy
accumulation theorem [DFR20], provides a tight lower bound for the smooth min-entropy
Hδ

min(A
n
1 ∣B

n
1E). We consider an approximate version of this setting in this chapter where

the channelsMk themselves do not necessarily satisfy the Markov chain condition, but they
can be ε-approximated by a sequence of channelsM′

k, which satisfies certain Markov chain
conditions. Such relaxations are important to understand the behaviour of cryptographic
protocols, like device-independent quantum key distribution [AFDF+18], implemented with
imperfect devices [JK23,Tan23]. Once again we can model this scenario as an approxima-
tion chain: for every 1 ≤ k ≤ n, the state produced in the kth step satisfies

ρAk1Bk1E = trRk ○Mk (Mk−1 ○⋯ ○M1(ρ
(0)
R0E

))

≈ε trRk ○M
′
k (Mk−1 ○⋯ ○M1(ρ

(0)
R0E

)) ∶= σ
(k)
Ak1B

k
1E
.

Moreover, the assumptions on the channelM′
k guarantee that the state σ(k)

Ak1B
k
1E

satisfies the
Markov chain condition Ak−1

1 ↔ Bk−1
1 E ↔ Bk. This implies that the chain rules and bounds

used for entropy accumulation apply to this state too, and hence we can expect that the
smooth min-entropy is large for it similar to the original setting.

To prove this, roughly speaking, we use the chain rules for divergences [FF21] to show
that the divergence distance between the states ρAn1Bn1E =Mn ○⋯○M1(ρ

(0)
R0E

) and the virtual
state σAn1Bn1E =M′

n ○⋯ ○M′
1(ρ

(0)
R0E

) is relatively small, and then reduce the problem of lower
bounding the smooth min-entropy of ρAn1Bn1E to that of lower bounding an α-Rényi entropy of
σAn1Bn1E, which can be done by using the chain rules developed for entropy accumulation(3). In
Theorem 3.12, we show the following smooth min-entropy lower bound for the state ρAn1Bn1E
for sufficiently small ε and an arbitrary δ > 0

Hδ
min(A

n
1 ∣B

n
1E)ρ ≥

n

∑
k=1

inf
ω
H(Ak∣BkR̃k−1)M′

k(ω) − nO(ε1/24) −O (
1

ε1/24) (3.6)

where the infimum is over all possible input states ωRk−1R̃k−1
for reference register R̃k−1 iso-

morphic to Rk−1, and the dimensions ∣A∣ and ∣B∣ are assumed constant while using the
asymptotic notation.

(3)The channel divergence bounds we are able to prove are too weak for this idea to work as stated here.
The actual proof is more complicated. However, this idea works in the classical case.

41



3.2. Entropic triangle inequality for the smooth min-
entropy

In this section, we derive a simple entropic triangle inequality (Lemma 3.5) for the smooth
min-entropy of the form in Eq. 3.4. This lemma is a direct consequence of the following tri-
angle inequality for D̃α (see [CMH17, Theorem 3.1] for a triangle inequality, which changes
the second argument of D̃α).

Lemma 3.1. Let ρ and η be subnormalised states and Q be a positive operator, then for
α > 1, we have

D̃α(ρ∣∣Q) ≤ D̃α(η∣∣Q) +
α

α − 1Dmax(ρ∣∣η) +
1

α − 1 log tr(η)
tr(ρ)

and for α < 1 if one of D̃α(η∣∣Q) and Dmax(ρ∣∣η) is finite (otherwise we cannot define their
difference), we have

D̃α(ρ∣∣Q) ≥ D̃α(η∣∣Q) −
α

1 − αDmax(ρ∣∣η) −
1

1 − α log tr(η)
tr(ρ) .

Proof. If Dmax(ρ∣∣η) = ∞, then both statements are true trivially. Otherwise, we have that
ρ ≤ eDmax(ρ∣∣η)η and also ρ≪ η. Now, if ρ /≪ Q then η /≪ Q. Hence, for α > 1 if D̃α(ρ∣∣Q) = ∞,
then D̃α(η∣∣Q) = ∞, which means the lemma is also satisfied in this condition. For α < 1, if
D̃α(ρ∣∣Q) = ∞, then the lemma is also trivially satisfied. For the remaining cases we have,

e(α−1)D̃α(ρ∣∣Q) =
tr (Q−α−1

2α ρQ−α−1
2α )

α

tr(ρ)

≤
tr (Q−α−1

2α eDmax(ρ∣∣η)ηQ−α−1
2α )

α

tr(ρ)

=
tr(η)
tr(ρ)e

αDmax(ρ∣∣η)e(α−1)D̃α(η∣∣Q)

where we used the fact that tr(f(X)) is monotone increasing if the function f is monotone
increasing. Dividing by (α − 1) now gives the result. �

We define smooth α-Rényi conditional entropy as follows to help us amplify the above
inequality.

Definition 3.2 (ε-smooth α-Rényi conditional entropy). For α ∈ (1,∞] and ε ∈ [0,1], we
define the ε-smooth α-Rényi conditional entropy as

H̃↑,εα (A∣B)ρ ∶= sup
ρ̃AB∈Bε(ρAB)

H̃↑α(A∣B)ρ̃. (3.7)
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Lemma 3.3. For α ∈ (1,∞] and ε ∈ [0,1), and states ρAB and ηAB we have

H̃↑,εα (A∣B)ρ ≥ H̃
↑
α(A∣B)η −

α

α − 1D
ε
max(ρAB ∣∣ηAB) −

1
α − 1 log 1

1 − ε2 .

Proof. Let ρ̃AB ∈ Bε(ρAB) be a subnormalised state such that Dmax(ρ̃AB ∣∣ηAB) =

Dε
max(ρAB ∣∣ηAB). Using Lemma 3.1 for α > 1, we have that for every state σB, we

have

D̃α(ρ̃AB ∣∣1A⊗σB) ≤ D̃α(ηAB ∣∣1A⊗σB) +
α

α − 1D
ε
max(ρAB ∣∣ηAB) +

1
α − 1 log 1

1 − ε2 (3.8)

where we used the fact that ρ̃AB ∈ Bε(ρAB) which implies that tr(ρ̃AB) ≥ 1 − ε2. Since, the
above bound is true for arbitrary states σB, we can multiply it by −1 and take the supremum
to derive

H̃↑α(A∣B)ρ̃ ≥ H̃
↑
α(A∣B)η −

α

α − 1D
ε
max(ρAB ∣∣ηAB) −

1
α − 1 log 1

1 − ε2 .

The desired bound follows by using the fact that H̃↑,εα (A∣B)ρ ≥ H̃
↑
α(A∣B)ρ̃. �

Lemma 3.4. For a state ρAB, ε ∈ [0,1), and δ ∈ (0,1) such that ε + δ < 1 and α ∈ (1,2], we
have

Hε+δ
min(A∣B)ρ ≥ H̃

↑,ε
α (A∣B)ρ −

g0(δ)

α − 1
where g0(x) ∶= − log(1 −

√
1 − x2).

Proof. First, note that

Hε+δ
min(A∣B)ρ ≥ sup

ρ̃∈Bε(ρAB)
Hδ

min(A∣B)ρ̃. (3.9)

To prove this, consider a ρ̃AB ∈ Bε(ρAB) and ρ′AB ∈ Bδ(ρ̃AB) such that Hmin(A∣B)ρ′ =

Hδ
min(A∣B)ρ̃. Then, using the triangle inequality for the purified distance, we have

P (ρAB, ρ
′
AB) ≤ P (ρAB, ρ̃AB) + P (ρ̃AB, ρ

′
AB)

≤ ε + δ

which implies that Hε+δ
min(A∣B)ρ ≥ Hmin(A∣B)ρ′ = Hδ

min(A∣B)ρ̃. Since, this is true for all
ρ̃ ∈ Bε(ρAB) the bound in Eq. 3.9 is true.

Using this, we have

Hε+δ
min(A∣B)ρ ≥ sup

ρ̃∈Bε(ρAB)
Hδ

min(A∣B)ρ̃

≥ sup
ρ̃∈Bε(ρAB)

{H̃↑α(A∣B)ρ̃ −
g0(δ)

α − 1}
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= H̃↑,εα (A∣B)ρ −
g0(δ)

α − 1

where we have used Lemma 2.23(4) in the second step. �

We can combine these two lemmas to derive the following result.

Lemma 3.5. For α ∈ (1,2], ε ∈ [0,1), and δ ∈ (0,1) such that ε + δ < 1 and two states ρAB
and ηAB, we have

Hε+δ
min(A∣B)ρ ≥ H̃

↑
α(A∣B)η −

α

α − 1D
ε
max(ρAB ∣∣ηAB) −

g1(δ, ε)

α − 1 (3.10)

where g1(x, y) ∶= − log(1 −
√

1 − x2) − log(1 − y2).

Proof. We can combine Lemmas 3.3 and 3.4 as follows to derive the bound in the lemma:

Hε+δ
min(A∣B)ρ ≥ H̃

↑,ε
α (A∣B)ρ −

g0(δ)

α − 1

≥ H̃↑α(A∣B)η −
α

α − 1D
ε
max(ρAB ∣∣ηAB) −

1
α − 1 (g0(δ) + log 1

1 − ε2) .

�

We also note the simple triangle inequality proven in the Introduction (Eq. 3.2) here for
use in the future.

Lemma 3.6. For two states ρAB and ηAB and ε ∈ [0,1), we have

Hε
min(A∣B)ρ ≥Hmin(A∣B)η −D

ε
max(ρAB ∣∣ηAB). (3.11)

We can use the asymptotic equipartition theorem for the smooth max-relative entropy
and smooth min-entropy (Eq. 2.45 and 2.46) to derive the following novel triangle inequality
for the von Neumann conditional entropy. Although we do not use this inequality in this
thesis, we believe it is interesting and may prove useful in the future.

Corollary 3.7. For α ∈ (1,2] and states ρAB and ηAB, we have that

H(A∣B)ρ ≥ H̃
↑
α(A∣B)η −

α

α − 1D(ρAB ∣∣ηAB). (3.12)

(4)This lemma is also valid for subnormalised states as long as δ ∈ (0,
√

2 tr(ρ̃) − tr(ρ̃)2) according to
[DFR20, Lemma B.4].
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Proof. Using Lemma 3.5 with α ∈ (1,2], the states ρ⊗nAB, and η⊗nAB and any ε > 0 and δ > 0
satisfying the conditions for the lemma, we get

Hε+δ
min(A

n
1 ∣B

n
1 )ρ⊗n ≥ H̃

↑
α(A

n
1 ∣B

n
1 )η⊗n −

α

α − 1D
ε
max(ρ

⊗n
AB ∣∣η

⊗n
AB) −

g1(δ, ε)

α − 1

⇒
1
n
Hε+δ

min(A
n
1 ∣B

n
1 )ρ⊗n ≥ H̃

↑
α(A∣B)η −

α

α − 1
1
n
Dε

max(ρ
⊗n
AB ∣∣η

⊗n
AB) −

1
n

g1(δ, ε)

α − 1 .

Taking the limit of the above for n→∞, we get

lim
n→∞

1
n
Hε+δ

min(A
n
1 ∣B

n
1 )ρ⊗n ≥ H̃

↑
α(A∣B)η − lim

n→∞
α

α − 1
1
n
Dε

max(ρ
⊗n
AB ∣∣η

⊗n
AB) − lim

n→∞
1
n

g1(δ, ε)

α − 1
⇒H(A∣B)ρ ≥ H̃

↑
α(A∣B)η −

α

α − 1D(ρAB ∣∣ηAB)

which proves the claim. �

3.3. Approximately independent registers
In this section, we introduce our technique for using the smooth min-entropy triangle

inequality for analysing approximation chains by studying a state ρAn1B such that for every
k ∈ [n]

∥ρAk1B − ρAk ⊗ ρAk−1
1 B∥1

≤ ε. (3.13)

We assume that the registers Ak all have the same dimension equal to ∣A∣. One should
think of the registers Ak as the secret information produced during some protocol, which
also provides the register B to an adversary. We would like to prove that Hf(ε)

min (An1 ∣B) is
large (lower bounded by Ω(n)) under the above approximate independence conditions for
some reasonably small function f of ε and close to nH(A1), if we assume the states ρAk are
identical.

Let us first examine the case where the state ρ above is classical. We use the stan-
dard notation for probability distributions to address elements of ρ, so that ρ(an1 , b) ∶=

⟨an1 , b∣ρAn1B ∣an1 , b⟩, where ∣an1 , b⟩ is standard basis vector. To show that in this case the
smooth min-entropy is high, we will show that the set where the conditional probability
ρ(an1 ∣b) ∶=

ρ(an1 b)
ρ(b) can be large, has a small probability using the Markov inequality. We will

use the following lemma for this purpose.

Lemma 3.8. Suppose p, q are probability distributions on X such that 1
2 ∥p − q∥1 ≤ ε, then

S ⊆ X defined as S ∶= {x ∈ X ∶ p(x) ≤ (1 + ε1/2)q(x)} is such that q(S) ≥ 1 − ε1/2 and
p(S) ≥ 1 − ε1/2 − ε.
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Proof. Let Sc ∶= X ∖ S, where S is the set defined above. If q(Sc) = 0, the statement in the
lemma is satisfied. If q(Sc) > 0, we have that

ε ≥
1
2 ∥p − q∥1 = max

H⊆X
∣p(H) − q(H)∣

≥ q(Sc) ∣
p(Sc)

q(Sc)
− 1∣

≥ q(Sc)(
p(Sc)

q(Sc)
− 1)

= q(Sc)(
∑x∈Sc p(x)

∑x∈Sc q(x)
− 1)

≥ q(Sc)(
∑x∈Sc(1 + ε

1
2 )q(x)

∑x∈Sc q(x)
− 1)

= q(Sc)ε
1
2

which implies that q(Sc) ≤ ε 1
2 . Now, the statement in the lemma follows. �

We will also assume for the sake of simplicity that ρAk are identical for all k ∈ [n]. Using the
lemma above, for every k ∈ [n], we know that the set

Bk ∶ = {(an1 , b) ∶ ρ(a
k
1, b) > (1 +

√
ε)ρ(ak−1

1 , b)ρ(ak)}

= {(an1 , b) ∶ ρ(ak∣a
k−1
1 , b) > (1 +

√
ε)ρ(ak)}

satisfies Prρ(Bk) ≤ 2
√
ε. We can now define L = ∑

n
k=1 χBk , which is a random variable that

simply counts the number of bad sets Bk an element (an1 , b) belongs to. Using the Markov
inequality, we have

Pr
ρ

[L > nε
1
4 ] ≤

Eρ[L]
nε

1
4

≤ 2ε 1
4 .

We can define the bad set B ∶= {(an1 , b) ∶ L(a
n
1 , b) > nε

1
4}. Using this, we can define the

subnormalised distribution ρ̃An1B as

ρ̃An1B(a
n
1 , b) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ρAn1B(a
n
1 , b) (an1 , b) /∈ B

0 else
.

We have P (ρ̃An1B, ρAn1B) ≤ 2ε1/8. Further, note that for every (an1 , b) /∈ B, we have

ρ(an1 ∣b) =
n

∏
k=1

ρ(ak∣a
k−1
1 , b)

= ∏
k∶(an1 ,b)/∈Bk

ρ(ak∣a
k−1
1 , b) ∏

k∶(an1 ,b)∈Bk
ρ(ak∣a

k−1
1 , b)

≤ (1 +
√
ε)n ∏

k∶(an1 ,b)/∈Bk
ρAk(ak)
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≤ (1 +
√
ε)ne−n(1−ε

1
4 )Hmin(A1)

where in the third line we have used the fact that if (an1 , b) /∈ Bk, then ρ(ak∣ak−1
1 b) ≤ (1 +

√
ε)ρAk(ak) and in the last line we have used the fact that for (ak1, b) /∈ B, we have ∣{k ∈

[n] ∶ (an1 ,b) /∈ Bk}∣ = n − L(an1 , b) ≥ n(1 − ε 1
4 ), that all the states ρAk are identical and

e−Hmin(Ak) = maxak ρAk(ak). Note that we have essentially proven and used a Dmax bound
above. This proves the following lower bound for the smooth min-entropy of ρ

H2ε
1
8

min(A
n
1 ∣B) ≥ n(1 − ε 1

4 )Hmin(A1) − n log(1 +
√
ε). (3.14)

The right-hand side above can be improved to get the Shannon entropy H instead of the
min-entropy Hmin. However, we will not pursue this here, since this bound is sufficient for
the purpose of our discussion.

Although, we do not generalise this classical argument to the quantum case yet (we will
do it in Sec. 5.4), it provides a great amount of insight into the approximately independent
registers problem. Two important examples of distributions, which satisfy the approximate
independence conditions above were mentioned in Footnotes (1) and (2) earlier. To create
the first distribution, we flip a biased coin B, which is 0 with probability ε and 1 otherwise.
If B = 0, then An1 is set to the constant all zero string otherwise it is sampled randomly
and independently. For this distribution, once the bad event (B = 0) is removed, the
new distribution has a high min-entropy. On the other hand, for the second distribution,
QA2n

1 B2n
1
, we have that the random bits Bi are chosen independently, with each being equal

to 0 with probability ε and 1 otherwise. If the bit Bi is 0, then Ai is set equal to Ai−1

otherwise it is sampled independently. In this case, there is no small probability (small as
a function of ε) event, that one can simply remove, so that the distribution becomes i.i.d.
However, we expect that with high probability the number of Bi = 0 is close to 2nε. Given
that the distribution samples all the other Ai independently, the smooth min-entropy for
the distribution should be close to 2n(1 − ε)H(A1). The above argument shows that any
distribution satisfying the approximate independence conditions in Eq. 3.13 can be handled
by combining the methods used for these two example distributions, that is, deleting the
bad part of the distribution and recognising that the probability for every element in the
rest of the space behaves independently on average.

The classical argument above is difficult to generalise to quantum states primarily because
the quantum equivalents of Lemma 3.8 are not as nice and simple. Furthermore, quantum
conditional probabilities themselves are also difficult to use. We will develop the tools to
generalise this argument in Chapter 5. Luckily for this problem, the substate theorem
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serves as the perfect tool for developing a smooth max-relative entropy bound, which can
then be used with the min-entropy triangle inequality. The quantum substate theorem
(Theorem 2.26) provides an upper bound on the smooth max relative entropy Dε

max(ρ∣∣σ)

between two states in terms of their relative entropy D(ρ∣∣σ):

D
√
ε

max(ρ∣∣σ) ≤
D(ρ∣∣σ) + 1

ε
+ log 1

1 − ε. (3.15)

In this section, we will also frequently use the multipartite mutual information [Wat60,
Hor94,CMS02]. For a state ρXn

1
, the multipartite mutual information between the registers

(X1,X2,⋯,Xn) is defined as

I(X1 ∶X2 ∶ ⋯ ∶Xn)ρ ∶=D(ρXn
1
∣∣ρX1 ⊗ρX2 ⊗⋯⊗ρXn). (3.16)

In other words, it is the relative entropy between ρXn
1
and ρX1 ⊗ρX2 ⊗⋯⊗ρXn . It can easily

be shown that the multipartite mutual information satisfies the following identities:

I(X1 ∶X2 ∶ ⋯ ∶Xn)ρ =
n

∑
k=1
H(Xk)ρ −H(X1⋯ Xn)ρ (3.17)

=
n

∑
k=2
I(Xk ∶X

k−1
1 ). (3.18)

Going back to proving a bound for the quantum approximately independent registers
problem, note that using the Alicki-Fannes-Winter (AFW) bound [AF04,Win16] for mutual
information [Wil13, Theorem 11.10.4], Eq. 3.13 implies that for every k ∈ [n]

I(Ak ∶ A
k−1
1 B)ρ ≤ ε log ∣A∣ + g2 (

ε

2) (3.19)

where g2(x) ∶= (x + 1) log(x + 1) − x log(x). With this in mind, we can now focus our efforts
on proving the following theorem.

Theorem 3.9. Let registers Ak have dimension ∣A∣ for all k ∈ [n]. Suppose a quantum state
ρAn1B is such that for every k ∈ [n], we have

I(Ak ∶ A
k−1
1 B)ρ ≤ ε (3.20)

for some 0 < ε < 1. Then, we have that

Hε
1
4 +ε

min (An1 ∣B)ρ ≥
n

∑
k=1
H(Ak)ρ − 3nε 1

4 log(1 + 2∣A∣)

−
2 log(1 + 2∣A∣)

ε3/4
−

2 log(1 + 2∣A∣)

ε1/4
(log(1 −

√
ε) + g1(ε, ε

1
4 )) (3.21)

where g1(x, y) ∶= − log(1 −
√

1 − x2) − log(1 − y2). In particular, when all the states ρAk are
identical, we have

Hε
1
4 +ε

min (An1 ∣B)ρ ≥ n (H(A1)ρ − 3ε 1
4 log(1 + 2∣A∣))
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−
2 log(1 + 2∣A∣)

ε3/4
−

2 log(1 + 2∣A∣)

ε1/4
(log(1 −

√
ε) + g1(ε, ε

1
4 )) . (3.22)

Proof. First note that we have,

I(A1 ∶ A2 ∶ ⋯ ∶ An ∶ B) =D(ρAn1B ∣∣
n

⊗
k=1

ρAk ⊗ ρB)

=
n

∑
k=1

I(Ak ∶ A
k−1
1 B)

≤ nε.

Using the substate theorem, we now have

Dε
1
4

max (ρAn1B∥
n

⊗
k=1

ρAk ⊗ ρB) ≤
D(ρAn1B ∣∣⊗

n
k=1 ρAk ⊗ ρB) + 1
√
ε

− log(1 −
√
ε)

≤ n
√
ε +

1
√
ε
− log(1 −

√
ε). (3.23)

We now define the auxiliary state ηAn1B ∶= ⊗n
k=1 ρAk ⊗ ρB. Using Lemma 3.5, for α ∈ (1,2),

we can transform the smooth min-entropy into an α-Rényi entropy on the auxiliary product
state ηAn1B as follows:

Hε
1
4 +ε

min (An1 ∣B)ρ

≥ H̃↑α(A
n
1 ∣B)η −

α

α − 1D
ε

1
4

max(ρAn1B ∣∣ηAn1B) −
g1(ε, ε

1
4 )

α − 1

=
n

∑
k=1
H̃↑α(Ak)ρ −

α

α − 1D
ε

1
4

max(ρAn1B ∣∣ηAn1B) −
g1(ε, ε

1
4 )

α − 1

≥
n

∑
k=1

H(Ak)ρ − n(α − 1) log2(1 + 2∣A∣) −
α

α − 1D
ε

1
4

max(ρAn1B ∣∣ηAn1B) −
g1(ε, ε

1
4 )

α − 1

≥
n

∑
k=1

H(Ak)ρ − n(α − 1) log2(1 + 2∣A∣) −
α

α − 1n
√
ε −

α

α − 1
1
√
ε
−

α

α − 1 log(1 −
√
ε) −

g1(ε, ε
1
4 )

α − 1 .

In the third line above, we have used [DFR20, Lemma B.9] (which is an improvement of
[TCR09, Lemma 8]), which is valid as long as α < 1+ 1

log(1+2∣A∣) . We will select α = 1+ ε1/4

log(1+2∣A∣)
for which the above α bound is satisfied, this gives us

Hε
1
4 +ε

min (An1 ∣B)ρ ≥
n

∑
k=1

H(Ak)ρ − 3nε 1
4 log(1 + 2∣A∣) −

2 log(1 + 2∣A∣)

ε3/4

−
2 log(1 + 2∣A∣)

ε1/4
(log(1 −

√
ε) + g1(ε, ε

1
4 )) .

�

We can now plug the bound in Eq. 3.19 to derive the following Corollary.
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Corollary 3.10. Let registers Ak have dimension ∣A∣ for all k ∈ [n]. Suppose a quantum
state ρAn1B is such that for every k ∈ [n], we have

∥ρAk1B − ρAk ⊗ ρAk−1
1 B∥1

≤ ε. (3.24)

Then, we have that for δ = ε log ∣A∣ + g2 (
ε
2) such that 0 < δ < 1,

Hδ
1
4 +δ

min (An1 ∣B)ρ ≥
n

∑
k=1

H(Ak)ρ − 3nδ 1
4 log(1 + 2∣A∣)

−
2 log(1 + 2∣A∣)

δ3/4 −
2 log(1 + 2∣A∣)

δ1/4 (log(1 −
√
δ) + g1(δ, δ

1
4 )) (3.25)

where g1(x, y) = − log(1 −
√

1 − x2) − log(1 − y2) and g2(x) = (x + 1) log(x + 1) − x log(x). In
particular, when all the states ρAk are identical, we have

Hδ
1
4 +δ

min (An1 ∣B)ρ ≥ n (H(A1)ρ − 3δ 1
4 log(1 + 2∣A∣))

−
2 log(1 + 2∣A∣)

δ3/4 −
2 log(1 + 2∣A∣)

δ1/4 (log(1 −
√
δ) + g1(δ, δ

1
4 )) . (3.26)

3.3.1. Weak approximate asymptotic equipartition

We can modify the proof of Theorem 3.9 to prove a weak approximate asymptotic equipar-
tition property (AEP).

Theorem 3.11. Let registers Ak have dimension ∣A∣ for all k ∈ [n] and the registers Bk have
dimension ∣B∣ for all k ∈ [n]. Suppose a quantum state ρAn1Bn1E is such that for every k ∈ [n],

we have

∥ρAk1Bk1E − ρAkBk ⊗ ρAk−1
1 Bk−1

1 E∥1
≤ ε. (3.27)

Then, we have that for δ = ε log (∣A∣∣B∣) + g2 (
ε
2) such that 0 < δ < 1,

Hδ
1
4 +δ

min (An1 ∣B
n
1E)ρ ≥

n

∑
k=1
H(Ak∣Bk)ρ − 3nδ 1

4 log(1 + 2∣A∣)

−
2 log(1 + 2∣A∣)

δ3/4 −
2 log(1 + 2∣A∣)

δ1/4 (log(1 −
√
δ) + g1(δ, δ

1
4 )) (3.28)

where g1(x, y) = − log(1 −
√

1 − x2) − log(1 − y2) and g2(x) = (x + 1) log(x + 1) − x log(x). In
particular, when all the states ρAkBk are identical, we have

Hδ
1
4 +δ

min (An1 ∣B
n
1E)ρ ≥ n (H(A1∣B1)ρ − 3δ 1

4 log(1 + 2∣A∣))

−
2 log(1 + 2∣A∣)

δ3/4 −
2 log(1 + 2∣A∣)

δ1/4 (log(1 −
√
δ) + g1(δ, δ

1
4 )) . (3.29)
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Proof. To prove this, we use the auxiliary state ηAn1Bn1E ∶= ⊗ρAkBk ⊗ ρE. Then, we have

D(ρAn1Bn1E ∣∣ηAn1Bn1E) = I(A1B1 ∶ A2B2 ∶ ⋯ ∶ AnBn ∶ E)ρ

=
n

∑
k=1

I(AkBk ∶ A
k−1
1 Bk−1

1 E)ρ

≤ n(ε log (∣A∣∣B∣) + g (
ε

2)) = nδ

where we used the AFW bound for mutual information in the last line [Wil13, Theorem
11.10.4]. The rest of the proof follows the proof of Theorem 3.9, only difference being that
now we have H̃↑α(An1 ∣Bn

1E)η = ∑
n
k=1 H̃

↑
α(Ak∣Bk)ρ. �

We call this generalisation weak because the smoothing term (δ) depends on size of the side
information ∣B∣. In Appendix A.5, we show that under the assumptions of the theorem,
some sort of bound on the dimension of the registers B is necessary otherwise one cannot
have a non-trivial bound on the smooth min-entropy.

3.3.2. Simple security proof for sequential device-independent
quantum key distribution

The approximately independent register scenario and the associated min-entropy lower
bound can be used to provide simple “proof of concept” security proofs for cryptographic
protocols. In this section, we briefly sketch a proof for sequential device-independent
quantum key distribution (DIQKD) to demonstrate this idea. We consider the sequential
DIQKD protocol presented in Protocol 2.2.

For simplicity, we assume Eve (the adversary) distributes a state ρ(0)EAEBE
between Alice

and Bob at the beginning of the protocol. Alice and Bob then use their states sequentially
as given in Protocol 2.2. The kth round of the protocol produces the questions Xk, Yk and
Tk, the answers Ak and Bk and transforms the shared state from ρ

(k−1)
EAEBE

to ρ(k)EAEBE
.

Given the questions and answers of the previous rounds, the state shared between Alice
and Bob and their devices in each round can be viewed as a device for playing the CHSH
game. Suppose in the kth round, the random variables produced in the previous k − 1
rounds are rk−1 ∶= xk−1

1 , yk−1
1 , tk−1

1 , ak−1
1 , bk−1

1 and that the state shared between Alice and Bob
is ρ(k−1)

EAEBE∣rk−1
. We can then define Pr[Wk∣rk−1] to be the winning probability of the CHSH

game played by Alice and Bob using the state and their devices in the kth round. Note that
Alice’s device cannot distinguish whether the CHSH game is played in a round or is used
for key generation. We can further take an average over all the previous round’s random
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variables to derive the probability of winning the kth game

Pr[Wk] = Erk−1 [Pr[Wk∣rk−1]] . (3.30)

Alice and Bob randomly sample a subset of the rounds (using the random variable Tk) and
play the CHSH game on this subset. If the average winning probability of CHSH game on
this subset is small, they abort the protocol. For simplicity and brevity, we will assume here
that the state ρ(0)EAEBE

distributed between Alice and Bob at the start of the protocol by Eve
has an average winning probability at least ωexp, that is,

1
n

n

∑
k=1

Pr[Wk] ≥ ωexp − δ (3.31)

for some small δ > 0(5).

For any shared state σEAEBE (where EA is held by Alice, EB is held by Bob and E is held
by the adversary) and local measurement devices, if Alice and Bob win the CHSH game with
a probability ω ∈ (3

4 ,
2+

√
2

4 ], then Alice’s answer A to the game is random given the questions
X,Y and the register E held by adversary. This is quantified by the following entropic bound
(Lemma 2.33)

H(A∣XY E) ≥ f(ω) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

log(2) − h (1
2 +

1
2

√
16ω(ω − 1) + 3) if ω ∈ [3

4 ,
2+

√
2

4 ]

0 if ω ∈ [0, 3
4)

(3.32)

where h(⋅) is the binary entropy. The function f is convex over the interval [0, 2+
√

2
4 ]. We

plot it in the interval [3
4 ,

2+
√

2
4 ] in Fig. 3.1.

For ε > 0, we choose the parameter ωexp ∈ [3
4 + δ,

2+
√

2
4 ] to be large enough so that

log(2) − f(ωexp − δ) = h(
1
2 +

1
2
√

16(ωexp − δ)(ωexp − δ − 1) + 3) ≤ ε4. (3.33)

We will now use Eq. 3.32 to bound the von Neumann entropy of the answers given Eve’s
information for the sequential DIQKD protocol. We have

H(An1 ∣X
n
1 Y

n
1 T

n
1 E) =

n

∑
k=1

H(Ak∣A
k−1
1 Xn

1 Y
n

1 T
n
1 E)

(1)
=

n

∑
k=1
H(Ak∣A

k−1
1 Xk

1Y
k

1 T
k
1 E)

(2)
=

n

∑
k=1
H(Ak∣XkYkRk−1E)

(5)By modifying the CHSH game played by Alice and Bob to the 3CHSH game (Sec. 6.2) and measuring
the winning probability for this game, one can show that either this assumption is true or the protocol aborts
with high probability.
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Fig. 3.1. The lower bound in Eq. 3.32 for the interval [3
4 ,

2+
√

2
4 ]

=
n

∑
k=1

Erk−1∼Rk−1 [H(Ak∣XkYkE)
ρ
(k)

∣rk−1
]

(3)
≥

n

∑
k=1

Erk−1∼Rk−1 [f (Pr[Wk∣rk−1])]

≥
n

∑
k=1

f (Pr[Wk])

≥ nf (
1
n

n

∑
k=1

Pr[Wk])

≥ nf(ωexp − δ) ≥ n(log(2) − ε4)

where in (1) we have used the fact that the questions sampled in the rounds after the kth

round are independent of the random variables in the previous rounds, in (2) we use the
fact that Alice’s answers are independent of the random variable Tk given the question Xk

and we also grouped the random variables generated in the previous round into the random
variable Rk−1 ∶= Ak−1

1 Bk−1
1 Xk−1

1 Y k−1
1 T k−1

1 , in (3) we use the bound in Eq. 3.32, and in the next
two steps we use convexity of f . If instead of the von Neumann entropy on the left-hand
side above we had the smooth min-entropy, then the bound above would be sufficient to
prove the security of DIQKD. However, this argument cannot be easily generalised to the
smooth min-entropy because a chain rule like the one used in the first step does not exist
for the smooth min-entropy (entropy accumulation [DFR20,MFSR24] generalises exactly
such an argument). We can use the argument used for the approximately independent
register case to transform this von Neumann entropy bound to a smooth min-entropy bound.
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Fig. 3.2. The setting for the EAT and approximate EAT.

This bound results in the following bound on the multipartite mutual information

I(A1 ∶ ⋯ ∶ An ∶X
n
1 Y

n
1 T

n
1 E) =

n

∑
k=1
H(Ak) +H(Xn

1 Y
n

1 T
n
1 E) −H(An1X

n
1 Y

n
1 T

n
1 E)

=
n

∑
k=1
H(Ak) −H(An1 ∣X

n
1 Y

n
1 T

n
1 E)

≤ n log(2) − n(log(2) − ε4) = nε4

where we have used the dimension bound H(Ak) ≤ 1 for every k ∈ [n]. This is the same
as the multipartite mutual information bound we derived while analysing approximately
independent registers in Theorem 3.9. We can simply use the smooth min-entropy bound
derived there here as well. This gives us the bound

H2ε
min(A

n
1 ∣X

n
1 Y

n
1 T

n
1 E) ≥

n

∑
k=1

H(Ak) − 3nε log 5 −O (
1
ε3

)

= n(log(2) − 3ε log 5) −O (
1
ε3

) (3.34)

where we have used the fact that the answers Ak can always be assumed to be uniformly
distributed [PAB+09,AF20]. For every ε > 0, we can choose a sufficiently large n so that
this bound is large and positive.

We note that this method is only able to provide “proof of concept” or existence type
security proofs. This proof method couples the value of the security parameter for privacy
amplification ε with the average winning probability, which is not desirable. The parameter
ε is chosen according to the security requirements of the protocol and is typically very small.
For such values of ε, the average winning probability of the protocol will have to be extremely
close to the maximum and we cannot realistically expect practical implementations to achieve
such high winning probabilities. However, we do expect that this method will make it easier
to create “proof of concept” type proofs for new cryptographic protocols in the future.
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3.4. Approximate entropy accumulation
In this section, we will prove our first approximate version of the entropy accumulation

theorem (EAT) using the entropic triangle inequality. We discussed EAT in Sec. 2.6. In the
setting for entropy accumulation, a sequence of channelsMk ∶ Rk−1 → AkBkRk for 1 ≤ k ≤ n

sequentially act on a state ρ(0)R0E
to produce the state ρAn1Bn1E = Mn ○⋯ ○ M1(ρ

(0)
R0E

) (see
Fig. 3.2). It is assumed that the channels Mk are such that the Markov chain Ak−1

1 ↔

Bk−1
1 E ↔ Bk is satisfied for every k. Under this assumption, EAT provides the following

lower bound for the smooth min-entropy

Hε
min(A

n
1 ∣B

n
1E)ρ ≥

n

∑
k=1

inf
ωRk−1R̃

H(Ak∣BkR̃)Mk(ω) − c
√
n (3.35)

where the infimum is taken over all input states to the channelsMk and c > 0 is a constant
depending only on ∣A∣ (size of registers Ak) and ε. We will state and prove an approximate
version of EAT. Consider the sequential process in Fig. 3.2 again. Now, suppose that the
channels Mk do not necessarily satisfy the Markov chain conditions mentioned above, but
each of the channels Mk can be ε-approximated by M′

k which satisfy the Markov chain
Ak−1

1 ↔ Bk−1
1 E ↔ Bk for a certain collection of inputs. The approximate entropy accumu-

lation theorem below provides a lower bound on the smooth min-entropy in such a setting.
The proof of this theorem again uses the technique based on the smooth min-entropy triangle
inequality developed in the previous section. In this setting too, we have an approximation
chain. For each k ∈ [n],

ρAk1Bk1E = trRk ○Mk (Mk−1 ○⋯ ○M1(ρ
(0)
R0E

))

≈ε trRk ○M
′
k (Mk−1 ○⋯ ○M1(ρ

(0)
R0E

)) ∶= σ
(k)
Ak1B

k
1E
.

According to the Markov chain assumption for the channelsM′
k, the state σ(k)

Ak1B
k
1E

, satisfies
the Markov chain Ak−1

1 ↔ Bk−1
1 E ↔ Bk. Therefore, we expect that the register Ak adds

some entropy to the smooth min-entropy Hε′

min(A
n
1 ∣B

n
1E)ρ and that the information leaked

through Bn
1 is not too large. We show that this is indeed the case in the approximate

entropy accumulation theorem.

The approximate entropy accumulation theorem can be used to analyse and prove the
security of cryptographic protocols under certain imperfections. The entropy accumulation
theorem itself is used to prove the security of sequential device-independent quantum key
distribution (DIQKD) protocols (Sec. 2.8.3). In these protocols, the side information Bk pro-
duced during each of the rounds are the questions used during the round to play a non-local
game, like the CHSH game. In the ideal case, these questions are sampled independently
of everything which came before. As an example of an imperfection, we can imagine that
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crosstalk between the memory storing the secret bits Ak−1
1 and the device producing the

questions may lead to a small correlation between the side information produced during the
kth round and the secret bits Ak−1

1 (also see [JK23,Tan23]). The approximate entropy accu-
mulation theorem below can be used to prove security of DIQKD under such imperfections.
We do not, however, pursue this example here and leave applications of this theorem for
future work. In Sec. 3.4.5, we modify this Theorem to incorporate testing for EAT.

Theorem 3.12. For k ∈ [n], let the registers Ak and Bk be such that ∣Ak∣ = ∣A∣ and ∣Bk∣ = ∣B∣.
For k ∈ [n], let Mk be channels from Rk−1 → RkAkBk and

ρAn1Bn1E = trRn ○Mn ○⋯ ○M1(ρ
(0)
R0E

) (3.36)

be the state produced by applying these maps sequentially. Suppose the channelsMk are such
that for every k ∈ [n], there exists a channel M′

k from Rk−1 → RkAkBk such that
(1) M′

k ε-approximates Mk in the diamond norm:
1
2 ∥Mk −M

′
k∥◇ ≤ ε (3.37)

(2) For every choice of a sequence of channels N i ∈ {Mi,M
′
i} for i ∈ [k − 1], the state

M′
k ○N k−1 ○⋯ ○N 1(ρ

(0)
R0E

) satisfies the Markov chain

Ak−1
1 ↔ Bk−1

1 E ↔ Bk. (3.38)

Then, for 0 < δ, ε1, ε2 < 1 such that ε1 + ε2 < 1, α ∈ (1,1 + 1
log(1+2∣A∣)) and β > 1, we have

Hε1+ε2
min (An1 ∣B

n
1E)ρ ≥

n

∑
k=1

inf
ωRk−1R̃

H(Ak∣BkR̃)M′
k(ω) − n(α − 1) log2(1 + 2∣A∣)

−
α

α − 1n log (1 + δ (eα−1
α

2 log(∣A∣∣B∣) − 1))

−
α

α − 1nzβ(ε, δ) −
1

α − 1 (g1(ε2, ε1) +
αg0(ε1)

β − 1 ) . (3.39)

where

zβ(ε, δ) ∶=
β + 1
β − 1 log

⎛
⎜
⎝
(1 +

√
(1 − δ)ε)

β
β+1

+
⎛

⎝

√
(1 − δ)ε
δβ

⎞

⎠

1
β+1⎞

⎟
⎠

(3.40)

and g1(x,y) = − log(1 −
√

1 − x2) − log(1 − y2) and the infimum in Eq. 3.39 is taken over all
input states ωRk−1R̃

to the channels M′
k where R̃ is a reference register (R̃ can be chosen

isomorphic to Rk−1).

For the choice of β = 2, δ = ε 1
8 , we have

z2(ε, δ) ≤ 3 log((1 + ε 1
2)

2
3
+ ε

1
12) .
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We also have that

log (1 + δeα−1
α

2 log(∣A∣∣B∣)) ≤ (∣A∣∣B∣)2ε
1
8 .

Finally, if we define εr ∶= (∣A∣∣B∣)2ε
1
8 + 3 log((1 + ε 1

2)
2
3
+ ε

1
12), and choose α =

√
εr, we get the

bound

Hε1+ε2
min (An1 ∣B

n
1E)ρ ≥

n

∑
k=1

inf
ωRkR̃k

H(Ak∣BkR̃k)M′
k(ωRkR̃k)

− n
√
εr(log2(1 + 2∣A∣) + 2) − 1

√
εr

(g1(ε2, ε1) + 2g0(ε1)) (3.41)

The entropy loss per round in the above bound behaves as ∼ ε1/24. This dependence on
ε is indeed very poor. In comparison, we can carry out a similar proof argument for
classical probability distributions to get a dependence of O(

√
ε) (Theorem A.13). The

exponent of ε in our bound seems to be almost a factor of 12 off from the best possible
bound. Roughly speaking, while carrying out the proof classically, we can bound the
relevant channel divergences in the proof by O (ε), whereas in Eq. 3.41, we were only
able to bound the channel divergence by ∼ ε1/12. This leads to the deterioration of perfor-
mance we see here as compared to the classical case. We will discuss this further in Sec. 3.4.6.

3.4.1. Proof idea

In order to prove this theorem, we will use a channel divergence based chain rule. Given
any divergence D, we can define the (stabilised) channel divergence based on D between two
channels NA→B andMA→B as [CMW16,LKDW18]

D(N ∣∣M) ∶= sup
ρAR

D(NA→B(ρAR)∣∣MA→B(ρAR)) (3.42)

where R is reference register of arbitrary size (∣R∣ = ∣A∣ can be chosen when D satisfies the
data processing inequality).

Recently proven chain rules for α-Rényi relative entropy [FF21, Corollary 5.2] state that
for α > 1 and states ρA and σA, and channels EA→B and FA→B, we have

D̃α(EA→B(ρA)∣∣FA→B(σA)) ≤ D̃α(ρA∣∣σA) + D̃
reg
α (EA→B ∣∣FA→B) (3.43)

where D̃reg
α (EA→B ∣∣FA→B) ∶= limn→∞

1
nD̃α(E

⊗n
A→B ∣∣F

⊗n
A→B).

Now observe that if we were guaranteed that for the maps in Theorem 3.12 above,
D̃reg
α (Mk ∣∣M

′
k) ≤ ε for every k for some α > 1. Then, we could use the chain rule in Eq. 3.43
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as follows

D̃α(Mn ○ ⋯ ○M1(ρ
(0)
R0E

)∣∣M′
n ○⋯ ○M′

1(ρ
(0)
R0E

))

≤ D̃α(Mn−1 ○⋯ ○M1(ρ
(0)
R0E

)∣∣M′
n−1 ○⋯ ○M′

1(ρ
(0)
R0E

)) + D̃reg
α (Mn ∣∣M

′
n)

≤ ⋯

≤ D̃α(ρ
(0)
R0E

∣∣ρ
(0)
R0E

) +
n

∑
k=1

D̃reg
α (Mk ∣∣M

′
k)

≤ nε.

Once we have the above result we can simply use the well known relation between smooth
max-relative entropy and α-Rényi relative entropy [Tom16, Proposition 6.5] to get the bound

Dε′

max(Mn ○ ⋯ ○M1(ρ
(0)
R0E

)∣∣M′
n ○⋯ ○M′

1(ρ
(0)
R0E

))

≤ D̃α(Mn ○⋯ ○M1(ρ
(0)
R0E

)∣∣M′
n ○⋯ ○M′

1(ρ
(0)
R0E

)) +
g0(ε′)

α − 1
≤ nε +O(1).

This bound can subsequently be used in Lemma 3.5 to relate the smooth min-entropy of the
real state Mn ○⋯ ○M1(ρ

(0)
R0E

) with the α−Rényi conditional entropy of the auxiliary state
M′

n ○⋯ ○M′
1(ρ

(0)
R0E

), for which we can use the original entropy accumulation theorem.

In order to prove Theorem 3.12, we broadly follow this idea. However, the condition
∥Mk −M

′
k∥◇ ≤ ε does not lead to any kind of bound on D̃reg

α or any other channel divergence.
We will get around this issue by instead using mixed channels Mδ

k ∶= (1 − δ)M′
k +δMk.

Also, instead of trying to bound channel divergence in terms of D̃reg
α , we will bound the

D#
α (defined in the next section) channel divergence and use its chain rule. We develop the

relevant α-Rényi divergence bounds for this divergence in the next two subsections and then
prove the theorem above in Sec 3.4.4.

3.4.2. Divergence bound for approximately equal states

We will use the sharp Rényi divergence D#
α defined in Ref. [FF21] (see [BSD21] for the

following equivalent definition) in this section. For α > 1 and two positive operators P and
Q, it is defined

D#
α (P ∣∣Q) ∶= min

A≥P
D̂α(A∣∣Q) (3.44)
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where D̂α(A∣∣Q) is the α-Rényi geometric divergence [Mat18]. For α > 1, it is defined as

D̂α(A∣∣Q) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
α−1 log tr (Q (Q− 1

2AQ− 1
2)

α
) if A≪ Q

∞ otherwise.
(3.45)

A in the optimisation above is any operator A ≥ P . In general, such an operator A is
unnormalised. We will prove a bound on D#

α between two states in terms of the distance
between them and their max-relative entropy. In order to prove this bound, we require the
following simple generalisation of the pinching inequality (see, for example, [Tom16, Sec.
2.6.3]).

Lemma 3.13 (Asymmetric pinching). For t > 0, a positive semidefinite operator X ≥ 0 and
orthogonal projections Π and Π⊥ = 1−Π, we have that

X ≤ (1 + t)ΠXΠ + (1 + 1
t
)Π⊥XΠ⊥. (3.46)

Proof. We will write the positive matrix X as the block matrix

X =
⎛

⎝

X1 X2

X∗
2 X3

⎞

⎠

where the blocks are partitioned according to the direct sum im(Π) ⊕ im(Π⊥). Then, the
statement in the lemma is equivalent to proving that

⎛

⎝

X1 X2

X∗
2 X3

⎞

⎠
≤
⎛

⎝

(1 + t)X1 0
0 0

⎞

⎠
+
⎛

⎝

0 0
0 (1 + 1

t
)X3

⎞

⎠

which is equivalent to proving that

0 ≤
⎛

⎝

tX1 −X2

−X∗
2

1
tX3

⎞

⎠
.

This is true because
⎛

⎝

tX1 −X2

−X∗
2

1
tX3

⎞

⎠
=
⎛

⎝

−t1/2 0
0 t−1/2

⎞

⎠

⎛

⎝

X1 X2

X∗
2 X3

⎞

⎠

⎛

⎝

−t1/2 0
0 t−1/2

⎞

⎠
≥ 0

since X ≥ 0. �

Lemma 3.14. Let ε > 0 and α ∈ (1,∞), ρ and σ be two normalised quantum states on the
Hilbert space Cn such that 1

2 ∥ρ − σ∥1 ≤ ε and also Dmax(ρ∣∣σ) ≤ d < ∞, then we have the bound

D#
α (ρ∣∣σ) ≤

α + 1
α − 1 log ((1 +

√
ε)

α
α+1 + (eαd

√
ε)

1
α+1) . (3.47)
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Note: For a fixed α ∈ (1,∞), this upper bound tends to zero as ε → 0. On the other hand,
for a fixed ε ∈ (0,1), the upper bound tends to infinity as α → 1 (that is, the bound becomes
trivial). In Appendix A.2, we show that a bound of this form for D#

α necessarily diverges
for ε > 0 as α → 1.

Proof. Since, Dmax(ρ∣∣σ) < ∞, we have that ρ≪ σ. We can assume that σ is invertible. If it
was not, then we could always restrict our vector space to the subspace supp(σ).

Let ρ − σ = P −Q, where P ≥ 0 is the positive part of the matrix ρ − σ and Q ≥ 0 is its
negative part. We then have that tr(P ) = tr(Q) ≤ ε.

Further, let

σ−
1
2Pσ−

1
2 =

n

∑
i=1
λi ∣xi⟩ ⟨xi∣ (3.48)

be the eigenvalue decomposition of σ− 1
2Pσ−

1
2 . Define the real vector q ∈ Rn as

q(i) ∶= ⟨xi∣σ ∣xi⟩ .

Note that q is a probability distribution. Observe that

EI∼q [λI] =
n

∑
i=1
λi ⟨xi∣σ ∣xi⟩

= tr(σ
n

∑
i=1
λi ∣xi⟩ ⟨xi∣)

= tr (σσ− 1
2Pσ−

1
2)

= tr(P )

≤ ε.

Also, observe that λi ≥ 0 for all i ∈ [n] because σ− 1
2Pσ−

1
2 ≥ 0. Let’s define

S ∶= {i ∈ [n] ∶ λi ≤
√
ε}. (3.49)

Since, λi ≥ 0 for all i ∈ [n], we can use the Markov inequality to show:

Pr
q
(I ∈ Sc) = Pr

q
(λI >

√
ε)

≤
EI∼q [λI]

√
ε

≤
√
ε.

Thus, if we define the projectors Π ∶= ∑i∈S ∣xi⟩ ⟨xi∣ and Π⊥ ∶= ∑i∈Sc ∣xi⟩ ⟨xi∣ = 1−Π, we have

tr(σΠ⊥) = ∑
i∈Sc

⟨xi∣σ ∣xi⟩
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= Pr
q
(I ∈ Sc)

≤
√
ε. (3.50)

Moreover, by the definition of set S (Eq. 3.49) we have

Πσ− 1
2Pσ−

1
2 Π = ∑

i∈S
λi ∣xi⟩ ⟨xi∣

≤
√
εΠ (3.51)

and using Dmax(ρ∣∣σ) ≤ d, we have that

σ−
1
2ρσ−

1
2 ≤ ed 1 . (3.52)

Now, observe that since σ− 1
2ρσ−

1
2 ≥ 0, for an arbitrary t > 0, using Lemma 3.13 we have

σ−
1
2ρσ−

1
2 ≤ (1 + t)Πσ− 1

2ρσ−
1
2 Π + (1 + 1

t
)Π⊥σ−

1
2ρσ−

1
2 Π⊥

≤ (1 + t)Π (1+σ−
1
2Pσ−

1
2)Π + (1 + 1

t
) edΠ⊥

≤ (1 + t)(1 +
√
ε)Π + (1 + 1

t
) edΠ⊥

where we have used ρ ≤ σ + P to bound the first term and Eq. 3.52 to bound the second
term in the second line, and Eq. 3.51 to bound Πσ− 1

2Pσ−
1
2 Π in the last step.

We will define At ∶= (1 + t)(1 +
√
ε)σ

1
2 Πσ 1

2 + (1 + 1
t
) edσ

1
2 Π⊥σ

1
2 . Above, we have shown

that At ≥ ρ for every t > 0. Therefore, for each t > 0, D#
α (ρ∣∣σ) ≤ D̂α(At∣∣σ). We will now

bound D̂α(At∣∣σ) for α ∈ (1,∞) as:

D̂α(At∣∣σ) =
1

α − 1 log tr (σ (σ−
1
2Atσ

− 1
2)

α
)

=
1

α − 1 log tr(σ ((1 + t)(1 +
√
ε)Π + (1 + 1

t
) edΠ⊥)

α

)

=
1

α − 1 log tr(σ ((1 + t)α(1 +
√
ε)αΠ + (1 + 1

t
)
α

edαΠ⊥))

=
1

α − 1 log ((1 + t)α(1 +
√
ε)α tr (σΠ) + (1 + 1

t
)
α

edα tr (σΠ⊥))

≤
1

α − 1 log ((1 + t)α(1 +
√
ε)α + (1 + 1

t
)
α

edα
√
ε)

where in the last line we use tr(σΠ) ≤ 1 and tr(σΠ⊥) ≤
√
ε (Eq. 3.50). Finally, since t > 0

was arbitrary, we can choose the t > 0 which minimizes the right-hand side. For this choice

of tmin = ( eαd
√
ε

(1+√ε)α)

1
α+1

, we get

D̂α(Atmin ∣∣σ) ≤
α + 1
α − 1 log ((1 +

√
ε)

α
α+1 + e

α
α+1dε

1
2(α+1))
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which proves the required bound. �

3.4.3. Bounding the channel divergence for two channels close to
each other

Suppose there are two channels N andM mapping registers from the space A to B such
that 1

2 ∥N −M∥◇ ≤ ε. In general, the channel divergence between two such channels can be
infinite because there may be states ρ such that N(ρ) /≪M(ρ). In order to get around this
issue, we will use the δ−mixed channel,Mδ. For δ ∈ (0,1), we defineMδ as

Mδ ∶= (1 − δ)M+ δN .

This guarantees that Dmax(N ∣∣Mδ) ≤ log 1
δ , which is enough to ensure that the divergences

we are interested in are finite. Moreover, by mixingM withN , we only decrease the distance:
1
2 ∥Mδ −N∥◇ =

1
2 ∥(1 − δ)M+δN −N∥◇

= (1 − δ)1
2 ∥M−N∥◇

≤ (1 − δ)ε. (3.53)

We will now show that D#
α (N ∣∣Mδ) is small for an appropriately chosen δ. By the definition

of channel divergence, we have that

D#
α (N ∣∣Mδ) = sup

ρAR

D#
α (N(ρAR)∣∣Mδ(ρAR))

where R is an arbitrary reference system (N ,Mδ map register A to register B). We will
show that for every ρAR, D#

α (N(ρAR)∣∣Mδ(ρAR)) is small. Note that

Mδ(ρAR) = (1 − δ)M(ρAR) + δN(ρAR)

≥ δN(ρAR)

which implies that Dmax(N(ρAR)∣∣Mδ(ρAR)) ≤ log 1
δ . Also, using Eq. 3.53 have that

1
2 ∥Mδ(ρAR) −N(ρAR)∥1 ≤ (1 − δ)ε.

Using Lemma 3.14, we have for every α ∈ (1,∞)

D#
α (N(ρAR)∣∣Mδ(ρAR)) ≤

α + 1
α − 1 log

⎛
⎜
⎝
(1 +

√
(1 − δ)ε)

α
α+1

+
⎛

⎝

√
(1 − δ)ε
δα

⎞

⎠

1
α+1⎞

⎟
⎠
.

Since, this is true for all ρAR, for every α ∈ (1,∞) we have

D#
α (N ∣∣Mδ) ≤

α + 1
α − 1 log

⎛
⎜
⎝
(1 +

√
(1 − δ)ε)

α
α+1

+
⎛

⎝

√
(1 − δ)ε
δα

⎞

⎠

1
α+1⎞

⎟
⎠
.
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Note that since δ was arbitrary, we can choose it appropriately to make sure that the above
bound is small, for example by choosing δ = ε 1

4α , we get the bound

D#
α (N ∣∣Mδ) ≤

α + 1
α − 1 log ((1 +

√
ε)

α
α+1 + ε

1
4(α+1))

which is a small function of ε in the sense that it tends to 0 as ε → 0. We summarise the
bound derived above in the following lemma.

Lemma 3.15. Let ε > 0. Suppose channels N and M from register A to B are such that
1
2 ∥N −M∥◇ ≤ ε. For δ ∈ (0,1), we can define the mixed channelMδ ∶= (1− δ)M+ δN . Then,
for every α ∈ (1,∞), we have the following bound on the channel divergence

D#
α (N ∣∣Mδ) ≤

α + 1
α − 1 log

⎛
⎜
⎝
(1 +

√
(1 − δ)ε)

α
α+1

+
⎛

⎝

√
(1 − δ)ε
δα

⎞

⎠

1
α+1⎞

⎟
⎠
. (3.54)

3.4.4. Proof of the approximate entropy accumulation theorem

We use the mixed channels defined in the previous section to define the auxiliary state
Mδ

n ○⋯○M
δ
1(ρ

(0)
R0E

) for our proof. It is easy to show using the divergence bounds in Sec. 3.4.3
and the chain rule for D#

α entropies that the relative entropy distance between the real
state and this choice of the auxiliary state is small. However, the stateMδ

n ○⋯ ○Mδ
1(ρ

(0)
R0E

)

does not necessarily satisfy the Markov chain conditions required for entropy accumulation.
Thus, we also need to reprove the entropy lower bound on this state by modifying the
approach used in the proof of the original entropy accumulation theorem.

Proof of Theorem 3.12. Using Lemma 3.15, for every δ ∈ (0,1) and for each k ∈ [n] we have
that for every β > 1, the mixed mapsMδ

k ∶= (1 − δ)M′
k +δMk satisfy

D#
β (Mk ∣∣M

δ
k) ≤

β + 1
β − 1 log

⎛
⎜
⎝
(1 +

√
(1 − δ)ε)

β
β+1

+
⎛

⎝

√
(1 − δ)ε
δβ

⎞

⎠

1
β+1⎞

⎟
⎠

∶= zβ(ε, δ) (3.55)

where we defined the right-hand side above as zβ(ε, δ). This can be made “small” by choosing
δ = ε

1
4β as was shown in the previous section. We use these maps to define the auxiliary state

as

σAn1Bn1E ∶= M
δ
n ○⋯ ○Mδ

1(ρ
(0)
R0E

). (3.56)

Now, we have that for β > 1 and ε1 > 0

Dε1
max(ρAn1Bn1E ∣∣σAn1Bn1E)
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≤ D̃β(ρAn1Bn1E ∣∣σAn1Bn1E) +
g0(ε1)

β − 1

≤D#
β (ρAn1Bn1E ∣∣σAn1Bn1E) +

g0(ε1)

β − 1

=D#
β (Mn ○⋯ ○M1(ρ

(0)
R0E

)∣∣Mδ
n ○⋯ ○Mδ

1(ρ
(0)
R0E

)) +
g0(ε1)

β − 1

≤D#
β (Mn−1 ○⋯ ○M1(ρ

(0)
R0E

)∣∣Mδ
n−1 ○⋯ ○Mδ

1(ρ
(0)
R0E

)) +D#
β (Mn ∣∣M

δ
n) +

g0(ε1)

β − 1
≤ ⋯

≤
n

∑
k=1

D#
β (Mk ∣∣M

δ
k) +

g0(ε1)

β − 1

≤ nzβ(ε, δ) +
g0(ε1)

β − 1 (3.57)

where the first line follows from [Tom16, Proposition 6.5], the second line follows
from [FF21, Proposition 3.4], fourth line follows from the chain rule for D#

β [FF21, Propo-
sition 4.5], and the last line follows from Eq. 3.55.

For ε2 > 0 and α ∈ (1,1 + 1
log(1+2∣A∣)), we can plug the above in the bound provided by

Lemma 3.5 to get

Hε1+ε2
min (An1 ∣B

n
1E)ρ ≥ H̃

↑
α(A

n
1 ∣B

n
1E)σ −

α

α − 1nzβ(ε, δ)

−
1

α − 1 (g1(ε2, ε1) +
αg0(ε1)

β − 1 ) . (3.58)

We have now reduced our problem to lower bounding H̃↑α(An1 ∣Bn
1E)σ. Note that we cannot

directly use the entropy accumulation here, since the mixed maps Mδ
k = (1 − δ)M′

k +δMk,
which means that with δ probability the Bk register may be correlated with Ak−1

1 even given
Bk−1

1 E, and it may not satisfy the Markov chain required for entropy accumulation.

The application of the mapsMδ
k can be viewed as applying the channelM′

k with prob-
ability 1 − δ and the channelMk with probability δ. We can define the channels N k which
map the registers Rk−1 to RkAkBkCk, where Ck is a binary register. The action of N k can
be defined as:

(1) Sample the classical random variable Ck ∈ {0,1} independently. Ck = 1 with proba-
bility 1 − δ and 0 otherwise.

(2) If Ck = 1 apply the mapM′
k on Rk−1, else applyMk on Rk−1.
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Let us call θAn1Bn1 Cn1 E = N n ○⋯○N 1(ρ
(0)
R0E

). Clearly trCn1 (θAn1Bn1 Cn1 E) = σAn1Bn1E. Thus, we have

H̃↑α(A
n
1 ∣B

n
1E)σ = H̃

↑
α(A

n
1 ∣B

n
1E)θ

≥ H̃↑α(A
n
1 ∣B

n
1C

n
1E)θ. (3.59)

We will now focus on lower bounding H̃↑α(An1 ∣Bn
1C

n
1E)θ. Using [Tom16, Proposition 5.1],

we have that

H̃↑α(A
n
1 ∣B

n
1C

n
1E)θ =

α

1 − α log∑
cn1

θ(cn1) exp(
1 − α
α

H̃↑α(A
n
1 ∣B

n
1E)θ∣cn1

) .

We will show that for a given cn1 , the conditional entropy H̃↑α(An1 ∣B
n
1E)θ∣cn1

accumulates
whenever the “good” mapM′

k is used and loses some entropy for the rounds where the “bad”
mapMk is used. The fact that cn1 contains far more 1s than 0s with a large probability then
allows us to prove a lower bound on H̃↑α(An1 ∣Bn

1C
n
1E)θ.

Claim 3.16. Define hk ∶= infω H̃↓α(Ak∣BkR̃k−1)M′
k(ω) where the infimum is over all states

ωRk−1R̃k−1
for a register R̃k−1, which is isomorphic to Rk−1, and s ∶= log(∣A∣∣B∣2). Then, we

have

H̃↑α(A
n
1 ∣B

n
1E)θ∣cn1

≥
n

∑
k=1

(δ(ck,1)hk − δ(ck,0)s) (3.60)

where δ(x,y) is the Kronecker delta function (δ(x,y) = 1 if x = y and 0 otherwise).

Proof. We will prove the statement

H̃↑α(A
k
1 ∣B

k
1E)θ

∣ck1
≥ H̃↑α(A

k−1
1 ∣Bk−1

1 E)θ
∣ck−1

1
+ (δ(ck,1)hk − δ(ck,0)s)

then the claim will follow inductively. We will consider two cases: when ck = 0 and when
ck = 1. First suppose, ck = 0 then θAk1Bk1E∣ck1 = trRk ○M

Rk−1→RkAkBk
k (θRk−1A

k−1
1 Bk−1

1 E∣ck1). In this
case, we have

H̃↑α(A
k
1 ∣B

k
1E)θ

∣ck1
≥ H̃↑α(A

k−1
1 ∣Bk

1E)θ
∣ck1
− log ∣A∣

≥ H̃↑α(A
k−1
1 ∣Bk−1

1 E)θ
∣ck1
− log (∣A∣∣B∣2)

= H̃↑α(A
k−1
1 ∣Bk−1

1 E)θ
∣ck−1

1
− s

where in the first line we have used the dimension bound in Lemma A.8, in the second
line we have used the dimension bound in Lemma A.10 and in the last line we have used
θAk−1

1 Bk−1
1 E∣ck1 = θAk−1

1 Bk−1
1 E∣ck−1

1
.

Now, suppose that ck = 1. In this case, we have that θAk1Bk1E∣ck1 = trRk ○M
′
k (θRk−1A

k−1
1 Bk−1

1 E∣ck1)

and since θRk−1A
k−1
1 Bk−1

1 E∣ck1 = Φk−1 ○Φk−2⋯○Φ1(ρ
(0)
R0E

) where each of the Φi ∈ {Mi,M
′
i}, using
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the hypothesis of the theorem we have that the state θAk1Bk1E∣ck1 = M′
k (θRk−1A

k−1
1 Bk−1

1 E∣ck1)

satisfies the Markov chain

Ak−1
1 ↔ Bk−1

1 E ↔ Bk.

Now, using Corollary A.7 (the H̃↑α counterpart for [DFR20, Corollary 3.5], which is the
main chain rule used for proving entropy accumulation), we have

H̃↑α(A
k
1 ∣B

k
1E)θ

∣ck1
≥ H̃↑α(A

k−1
1 ∣Bk−1

1 E)θ
∣ck1
+ inf

ω
H̃↓α(Ak∣BkR̃k−1)M′

k(ω)

= H̃↑α(A
k−1
1 ∣Bk−1

1 E)θ
∣ck−1

1
+ hk

where in the last line we have again used θAk−1
1 Bk−1

1 E∣ck1 = θAk−1
1 Bk−1

1 E∣ck−1
1

. Combining these two
cases, we have

H̃↑α(A
k
1 ∣B

k
1E)θ

∣ck1
≥ H̃↑α(A

k−1
1 ∣Bk−1

1 E)θ
∣ck−1

1
+ (δ(ck,1)hk − δ(ck,0)s) . (3.61)

Using this bound n times starting with H̃↑α(An1 ∣Bn
1E)θ∣cn1

gives us the bound required in the
claim. �

For the sake of clarity let lk(ck) ∶= (δ(ck,1)hk − δ(ck,0)s). We will now evaluate

∑
cn1

θ(cn1) exp(
1 − α
α

H̃↑α(A
n
1 ∣B

n
1E)θ∣cn1

) ≤ ∑
cn1

θ(cn1) exp(
1 − α
α

n

∑
k=1
lk(ck))

= ∑
cn1

n

∏
k=1

θ(ck)e
1−α
α
lk(ck)

=
n

∏
k=1
∑
ck

θ(ck)e
1−α
α
lk(ck). (3.62)

Then, we have

H̃↑α(A
n
1 ∣B

n
1C

n
1E)θ =

α

1 − α log∑
cn1

θ(cn1) exp(
1 − α
α

H̃↑α(A
n
1 ∣B

n
1E)θ∣cn1

) .

≥
α

1 − α
n

∑
k=1

log∑
ck

θ(ck)e
1−α
α
lk(ck)

=
α

1 − α
n

∑
k=1

log ((1 − δ)e 1−α
α
hk + δe−

1−α
α
s)

=
n

∑
k=1
hk −

α

α − 1
n

∑
k=1

log (1 − δ + δeα−1
α

(s+hk))

≥
n

∑
k=1
hk −

α

α − 1n log (1 + δ (eα−1
α

(s+log ∣A∣) − 1)) (3.63)

where in the second line we have used Eq. 3.62 and in the last line we have used the fact
that hk ≤ log ∣A∣ for all k ∈ [n].
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We restricted the choice of α to the region (1,1 + 1
log(1+2∣A∣)) in the theorem, so that we

can now use [DFR20, Lemma B.9] to transform the above to

H̃↑α(A
n
1 ∣B

n
1C

n
1E)θ ≥

n

∑
k=1

inf
ωRk−1R̃k−1

H(Ak∣BkR̃k−1)M′
k(ω) − n(α − 1) log2(1 + 2∣A∣)

−
α

α − 1n log (1 + δ (eα−1
α

2 log(∣A∣∣B∣) − 1)) . (3.64)

Putting Eq. 3.58, Eq. 3.59, and Eq. 3.64 together, we have

Hε1+ε2
min (An1 ∣B

n
1E)ρ ≥

n

∑
k=1

inf
ωRk−1R̃k−1

H(Ak∣BkR̃k−1)M′
k(ω) − n(α − 1) log2(1 + 2∣A∣)

−
α

α − 1n log (1 + δ (eα−1
α

2 log(∣A∣∣B∣) − 1))

−
α

α − 1nzβ(ε, δ)
1

α − 1 (g1(ε2, ε1) +
αg0(ε1)

β − 1 ) .

�

3.4.5. Testing for approximate EAT

We will now incorporate testing into the approximate entropy accumulation theorem
proven in Theorem 3.12. Testing enables one to prove a lower bound on the smooth
min-entropy of a state produced by the process in Fig. 2.1 conditioned on the output of
a classical event. This is particularly useful for proving tight and practical bounds in
cryptographic protocols.

In this section, we will consider the channels Mk and M′
k which map registers Rk−1 to

AkBkXkRk such that Xk is a classical value which is determined using the registers Ak and
Bk. Concretely, suppose that for every k, there exist a channel Tk ∶ AkBk → AkBkXk of the
form

Tk(ωAkBk) = ∑
y,z

Π(y)
Ak

⊗Π(z)
Bk
ωAkBkΠ

(y)
Ak

⊗Π(z)
Bk

⊗ ∣x(y,z)⟩ ⟨x(y,z)∣Xk (3.65)

where {Π(y)
Ak

}y and {Π(z)
Bk

}z are orthogonal projectors and x(⋅) is some deterministic function
which uses the measurements y and z to create the output register Xk.

In order to define the min-tradeoff functions, we let P be the set of probability distri-
butions over the alphabet of X registers. Let R be any register isomorphic to Rk−1. For a
probability q ∈ P and a channel N k ∶ Rk−1 → AkBkXkRk, we also define the set

Σk(q∣N k) ∶= {νAkBkXkRkR = N k(ωRk−1R) ∶ for a state ωRk−1R such that νXk = q} . (3.66)
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Definition 3.17. A function f ∶ P → R is called a min-tradeoff function for the channels
{N k}nk=1 if for every k ∈ [n], it satisfies

f(q) ≤ inf
ν∈Σk(q∣N k)

H(Ak∣BkR)ν . (3.67)

We will also need the definitions of the following simple properties of the min-tradeoff
functions for our entropy accumulation theorem:

Max(f) ∶= max
q∈P

f(q) (3.68)

Min(f) ∶= min
q∈P

f(q) (3.69)

MinΣ(f) ∶= min
q∶Σ(q)≠∅

f(q) (3.70)

Var(f) ∶= max
q∶Σ(q)≠∅

∑
x

q(x)f(δx)
2 − (∑

x

q(x)f(δx))

2

(3.71)

where Σ(q) ∶= ⋃k Σk(q) and δx is the distribution with unit weight on the alphabet x.

Theorem 3.18. For k ∈ [n], let the registers Ak and Bk be such that ∣Ak∣ = ∣A∣ and ∣Bk∣ = ∣B∣.
For k ∈ [n], let Mk be channels from Rk−1 → RkAkBkXk and

ρAn1Bn1Xn
1 E

= trRn ○Mn ○⋯ ○M1(ρ
(0)
R0E

) (3.72)

be the state produced by applying these maps sequentially. Further, let Mk be such that
Mk = Tk ○ M

(0)
k for Tk defined in Eq. 3.65 and some channel M(0)

k ∶ Rk−1 → RkAkBk.
Suppose the channels Mk are such that for every k ∈ [n], there exists a channel M′

k from
Rk−1 → RkAkBkXk such that

(1) M′
k = Tk ○M

′(0)
k for some channel M′(0)

k ∶ Rk−1 → RkAkBk.
(2) M′

k ε-approximates Mk in the diamond norm:
1
2 ∥Mk −M

′
k∥◇ ≤ ε (3.73)

(3) For every choice of a sequence of channels N i ∈ {Mi,M
′
i} for i ∈ [k − 1], the state

M′
k ○N k−1 ○⋯ ○N 1(ρ

(0)
R0E

) satisfies the Markov chain

Ak−1
1 ↔ Bk−1

1 E ↔ Bk. (3.74)

Then, for an event Ω defined using Xn
1 , an affine min-tradeoff function f for {M′

k}
n
k=1 such

that for every xn1 ∈ Ω, f(freq(xn1)) ≥ h, for parameters 0 < δ, ε1, ε3 < 1 and ε2 ∶= 2
√

ε1
Prρ(Ω) such

that ε2 + ε3 < 1, α ∈ (1,2), and β > 1, we have

Hε2+ε3
min (An1 ∣B

n
1E)ρ∣Ω ≥ nh −

(α − 1) log(2)
2 (log(2∣A∣2 + 1) + log(2)

√
2 +Var(f))

2
− n(α − 1)2Kα

−
α

α − 1n log (1 + δ (eα−1
α

2(log(∣A∣∣B∣)+Max(f)−Min(f)+1) − 1))

68



−
α

α − 1nzβ(ε, δ) −
1

α − 1 (α log 1
Prρ(Ω) − ε1

+ g1(ε3, ε2) +
αg0(ε1)

β − 1 ) .

(3.75)

where

zβ(ε, δ) ∶=
β + 1
β − 1 log

⎛
⎜
⎝
(1 +

√
(1 − δ)ε)

β
β+1

+
⎛

⎝

√
(1 − δ)ε
δβ

⎞

⎠

1
β+1⎞

⎟
⎠

(3.76)

Kα ∶=
1

6(2 − α)3 e
(α−1)(2 log ∣A∣+(Max(f)−MinΣ(f))) log3 (e(2 log ∣A∣+(Max(f)−MinΣ(f))) + e2) (3.77)

and g1(x,y) = − log(1 −
√

1 − x2) − log(1 − y2).

We provide a proof for this theorem in Appendix A.8.

3.4.6. Limitations and further improvements

As we pointed out previously, the dependence of the entropy loss per round on ε is very
poor (behaves as ∼ ε1/24) in Theorem 3.12. The classical version of this theorem has a much
better dependence of O(

√
ε) on ε (see Theorem A.13). The reason for the poor performance

of the quantum version is that our bound on the channel divergence (Lemma 3.15) is very
weak compared to the bound we can use classically. It should be noted, however, that if
Lemma 3.15 were to be improved in the future, one could simply plug the new bound into
our proof and derive an improvement for Theorem 3.12.

A better bound on the channel divergence would have an additional benefit. It could
simplify the proof and the Markov chain assumption in our theorem. In particular, it
would be much easier to carry out the proof if the mixed channels Mδ

k were defined as
(1 − δ)M′

k +δτAkBk ⊗ trAkBk ○Mk (which is what is done classically), where τAkBk is the
completely mixed state on registers AkBk. Here, instead of mixing the channel M′

k with
Mk, we mix it with τAkBk ⊗ trAkBk ○Mk, which also keeps Dmax(Mk ∣∣M

δ
k) small enough.

Moreover, this definition ensures that the registers Bk produced by the map Mδ
k always

satisfy the Markov chain conditions. If it were possible to show that the divergence between
the real state Mn ○⋯ ○M1(ρ

(0)
R0E

) and the auxiliary state Mδ
n ○⋯ ○Mδ

1(ρ
(0)
R0E

) is small for
this definition of Mδ

k, then one could directly use the entropy accumulation theorem for
lower bounding the entropy for the auxiliary state. We cannot do this in our proof as this
definition of the mixed channelMδ

k also increases the distance from the original channelMk

to ε+2δ and this makes the upper bound in Lemma 3.14 large (finite even in the limit ε→ 0).
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It seems that it should be possible to weaken the assumptions for approximate entropy
accumulation. The classical equivalent of this theorem (Theorem A.13) for instance can
be proven very easily and requires a much weaker approximation assumption. It would be
interesting if one could remove the “memory” registers Rk from the assumptions required
for approximate entropy accumulation, since these are not typically accessible to the users
in applications.

Another troubling feature of the approximate entropy accumulation theorem seems
to be that it assumes that the size of the side information registers Bk is constant. One
might wonder if this is necessary, since continuity bounds like the Alicki-Fannes-Winter
(AFW) inequality do not depend on the size of the side information. It turns out that
a bound on the side information size is indeed necessary in this case. We show a simple
classical example to demonstrate this in Appendix A.5. The necessity of such a bound also
rules out a similar approximate extension of the generalised entropy accumulation theorem
(GEAT) [MFSR24].
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Chapter 4

Proving security of BB84 under source
correlations

4.1. Introduction
Protocols in quantum cryptography often require an honest party to produce multiple

independent quantum states. As an example, quantum key distribution (QKD) proto-
cols [BB84,Ben92] and bit commitment protocols [KWW12, LMT20] all require the
honest participant, Alice to produce an independently and randomly chosen quantum state
from a set of states in every round of the protocol. The security proofs for these protocols
also rely on the fact that the quantum state produced in each round of the protocol is
independent of the other rounds. However, this is a difficult property to enforce practically.
All physical devices have an internal memory, which is difficult to characterise and control.
This memory can cause the quantum states produced in different rounds to be correlated
with one another. For example, when implementing BB84 states using the polarisation of
light, if the polariser is in the horizontal polarisation (∣0⟩) for round k, and it is switched
to the Π/4-diagonal polarisation (∣+⟩) in the (k + 1)th round, then it is plausible that the
state produced in the (k + 1)th round is “tilted” towards the horizontal (that is, has a
larger component along ∣0⟩ than ∣1⟩) simply due to the inertia of switching the polariser.
Such correlations between different rounds caused by an imperfect source are called source
correlations. Security proofs for cryptographic protocols need to consider such correlations
in order to be relevant in the real world.

An extensive line of research has led to techniques for proving the security of QKD
protocols with a perfect source [SP00,Ren06,Koa09,TL17,DFR20,MR22]. However,



Fig. 4.1. Quantum input for the BB84 protocol with a perfect source.

almost all of these techniques rely on source purification(1)– the fact that the security of
this protocol is equivalent to one where Alice sends out one half of a Bell state in each
round and randomly measures her half. When the states produced by Alice’s source are
correlated across different rounds, this equivalence step fails and one can no longer use these
methods. In this chapter, we use the entropic triangle inequality to reduce the security
of the BB84 QKD protocol with source correlations to that of the BB84 protocol with a
perfect source. With this reduction, one can simply use one of the many security analysis
methods developed to complete the security proof(2). We demonstrate our technique using
the BB84 protocol, although we believe it is quite general and can be applied to other
cryptographic protocols as well.

In the BB84 protocol, the only quantum state to the protocol is provided by Alice. The
protocol can be represented as in Fig. 4.1. If the source is imperfect and the BB84 protocol
is directly performed on the state produced by such a source as in Fig. 4.1, it is difficult
to analyse the protocol and provide good security guarantees(3). Instead, we propose and
analyse the setup presented in Fig. 4.2. Here the source is tested during the execution of
the protocol using a simple procedure and the protocol run is only declared valid if the test
passes. The source test randomly measures the output of the source on a small sample
of the rounds in the preparation basis and aborts if the relative deviation of the observed
output from the expected output is more than some small threshold ε. Practically, this test

(1)Only [MR22] does not use source purification, but it still requires that the states in each round be
produced independently.

(2) Following the reduction, any security proof technique for QKD which can bound H̃↑α of Alice’s raw
key given Eve’s side information can be used to complete the proof. The assumptions for the security of the
protocol will be a combination of the assumptions required for this security proof and the assumptions used
during the source test presented in Protocol 4.2.

(3) The following example demonstrates the difficulty. Imagine a source which at the start of the QKD
protocol flips a coin C, which is 0 with probability εs. If C = 1, the source produces the qubit states perfectly,
otherwise if C = 0 it encodes 0 whenever a key generation basis is used. The state produced by this source
will be O(εs) close to the perfect state in each round. It will also not abort during parameter estimation.
However, with probability εs no key is produced between Alice and Bob. In this situation, we would like the
protocol’s secrecy error to remain arbitrarily small and its abort probability to be ≈ εs. For this we need to
be able to somehow identify the C = 0 bad case.
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Fig. 4.2. The setup for performing the BB84 protocol with a source test.

can be carried out concurrently with the BB84 protocol and no quantum memory is required.

Roughly speaking, the output of the source test has at most ε error in each round. This
scenario can be viewed through the framework of approximation chains: after the source
test, one can show that almost every partial state ρXk

1 Θk1Ak1 ∣Ω can be approximated by a
state of the form ρXk−1

1 Θk−1
1 Ak−1

1 ∣Ω ⊗ ρ̂XΘA, where ρ̂XΘA is the perfect state. While one can
formalise this connection, we do not pursue it as it does not yield additional insights. The
randomised testing actually ensures that the deviations in a round are not correlated with
those in the other rounds (as they are in the example in Footnote (3)). This allows us to
achieve an arbitrary smoothing parameter (and protocol error), in contrast to the analysis
for the approximately independent registers problem in the previous chapter. This is crucial
for practical QKD protocols.

For the security analysis of the protocol depicted in Fig. 4.2, we do not require any
additional assumptions on the source. Assumptions are only required on the measurements
used for the source test. In Section 4.3, we present the security analysis assuming perfect
measurements and then in Section 4.4, we demonstrate how this analysis can be modified to
incorporate imperfect measurements. It is worth noting that these measurements are used
at a much smaller rate than the source, so it should be easier to implement them almost
perfectly than it is to do the same for the source. In comparison, [PCLN+22], which is one
of the most comprehensive treatments of source imperfections and source correlation, makes
multiple complex assumptions about Alice’s source (also see [CLPK+23]). Among these,
it assumes that the state produced by Alice in the kth round can only be correlated to the
states produced in the `c rounds preceding it, where `c is some known constant. Moreover,
it also assumes that Alice’s quantum states are not entangled across different rounds. These
are both, as noted by the authors in [PCLN+22], very strong assumptions, which cannot
be guaranteed in practical setups. Importantly, it is also not possible to accurately estimate
the parameter `c experimentally.
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The source test also addresses the challenge of characterising the source for QKD
[MST+19,KZF19,HML+23]. Most theoretical descriptions of QKD protocol require the
source to operate almost perfectly. Thus, in order to implement these protocols one needs to
characterise the source beforehand. Since we show security of BB84 as long as the source test
succeeds, no prior characterisation is required for the source in our protocol. However, one
still needs to characterise the measurements used in the source test. As mentioned above,
this might be easier since the measurements are used at a much smaller rate.

4.2. Quantum sampling
In order to use the entropic triangle inequality effectively, we need a way to bound the

Dε
max between the output of the source test and the almost perfect source state. We will

use results from [BF10] for this task. [BF10] studies how sampling techniques can be used
to estimate the relative weight of a string classically as well as quantumly. In particular,
it essentially generalises the Hoeffding-Serfling random sampling bounds to quantum states.
The main result of this paper has been summarised as the theorem below. To state it, we
first need to define the relative weight of a string. For an alphabet X and a string xn1 ∈ X n,
the relative weight of xn1 is the frequency of non-zero xi, that is,

ω(xn1) ∶=
1
n
∣{i ∈ [n] ∶ xi ≠ 0}∣. (4.1)

Further, for a string xn1 and a subset S ⊆ [n], let xS refer to the string (xi)i∈S.

Theorem 4.1 (Quantum sampling [BF10]). Let Ψ be a sampling strategy which takes a
string an1 , selects a random subset Γ ⊆ [n] using the probability distribution pΓ, a random
seed K with probability pK and produces an estimate f(Γ, aΓ,K) for the relative weight of
the rest of the string aΓ̄. We can define the set of strings for which this strategy provides a
δ-correct estimate for δ > 0 given the choices Γ = γ and K = κ as

Bδ
γκ(Ψ) ∶= {an1 ∶ ∣ω(aγ̄) − f(γ, aγ, κ)∣ < δ} (4.2)

where γ̄ is the complement of the set γ in [n]. The classical maximum error probability for
this strategy Ψ is defined as

εδcl ∶= max
an1

Pr
ΓK

[an1 /∈ Bδ
ΓK(Ψ)]. (4.3)

Define the projectors Πδ∣γκ
An1

∶= ∑an1 ∈Bδγκ(Ψ) ∣a
n
1 ⟩ ⟨a

n
1 ∣An1

. Then, for a quantum state ρAn1E, we
have that the state

ρ̃ΓKAn1E ∶= ∑
γκ

p(γκ) ∣γκ⟩ ⟨γκ∣ΓK ⊗
Πδ∣γκ
An1

ρAn1EΠδ∣γκ
An1

tr (Πδ∣γκ
An1

ρAn1E)
(4.4)
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is εδqu =
√
εδcl close to the state ρΓKAn1E ∶= ∑γκ p(γκ) ∣γκ⟩ ⟨γκ∣ΓK ⊗ ρAn1E in trace distance.

If one were to measure the string in the register given by Aγ of the state ρ̃ defined above,
then the rest of the registers Aγ̄ of ρ̃ would lie in a subspace, which has relative weight δ-close
to f(γ, aγ, κ).

4.3. Security proof for BB84 with source correlations
We consider the BB84-QKD protocol described in Protocol 4.1 (based on [DFR20] and

[MR22]). This is slightly different from the protocol in Protocol 2.1 to ensure compatibility
with the entropy accumulation theorem, which we use for the security proof. In Table 4.1,
we list all the variables we use for our proof along with their definitions.

At the beginning of every round of the QKD protocol, Alice prepares the classical registers
Xi and Θi, and the corresponding qubit in the register Ai. If Alice’s quantum source were
perfect, she would produce the following state during each round of the protocol

ρ̂XΘA ∶= ∑
x∈X ,θ∈Θ

p(x, θ) ∣x, θ⟩ ⟨x, θ∣XΘ ⊗Hθ ∣x⟩ ⟨x∣AH
θ (4.5)

where H is the Hadamard gate and

p(x, θ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1−µ
∣X ∣ if θ = 0
µ
∣X ∣ if θ = 1.

Consider the case, where Alice only has access to an imperfect quantum source to prepare
qubits for the QKD protocol above. We will assume here that the classical randomness used
by Alice is perfect. We do not place any assumptions on the performance of the source.
Suppose Alice and Bob use n rounds for the BB84 protocol. In order, to perform the QKD
protocol with the imperfect source, we require that Alice uses her source to first perform the
source test given in Protocol 4.2 with (n +m)-total rounds. This test randomly selects m
rounds of the source output, measures the qubit Ai in the basis given by Θi and compares
the result with the encoded bit Xi for these rounds. The source passes the test if the fraction
of errors is less than ε, which is a source error threshold chosen by Alice. Subsequently,
Alice uses the n remaining rounds produced by the source for the BB84 protocol provided
the source test does not abort. The complete protocol is depicted in Fig. 4.2. It should be
noted that Alice can actually run Protocol 4.2 concurrently with the BB84 protocol. She
does not need to create all the (n+m)-rounds at once and store them in a memory in order
to carry out this protocol. She can classically sample a random set Γ of size m at the start
of the BB84 protocol and for every round i, she can use the round as source test round if
i ∈ Γ or forward the state produced to Bob if i /∈ Γ. For theoretical purposes, this concurrent
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BB84 QKD protocol

Parameters:
– n is the number of qubits sent by Alice.
– µ ∈ (0,1) is the probability of both encoding and measuring in the X basis

{∣+⟩ , ∣−⟩}.
– e ∈ (0, 1

2) is the maximum error tolerated.
– r ∈ (0,1) is the key rate of the protocol.

Protocol:
(1) For every 1 ≤ i ≤ n perform the following steps:

(a) Alice chooses a random bit Xi ∈R {0,1} and with probability 1 − µ encodes
it in the Z basis and with probability µ in the X basis.

(b) Alice sends her encoded qubit to Bob.
(c) Bob measures the qubit in the Z basis with probability 1−µ and in the X

basis with probability µ. He records the output as Yi.
(2) Sifting: Alice and Bob share their choice of bases for all the rounds and discard

the rounds where their choices are different. We denote the remaining rounds by
the set S.

(3) Information reconciliation: Alice and Bob use an information reconciliation
procedure, which lets Bob obtain a guess X̂S for Alice’s raw key XS.

(4) Raw key validation: Alice selects a random hash function from a 2-universal
family and sends it along with hash(XS) to Bob. If hash(XS) ≠ hash(X̂S) Bob
aborts the protocol.

(5) Parameter estimation: Let SX be the set of rounds where Alice prepared the
qubit in the X basis and Bob measured the qubit in X basis. Bob aborts if
∣{i ∈ SX ∶ X̂i ≠ Yi}∣ > eµ2n.

(6) Privacy Amplification: Alice chooses a random function F from a set of 2-
universal hash functions from ∣S∣ bits to ⌊rn⌋ bits and announces it Bob. Alice
and Bob compute the final key as F (XS) and F (X̂S) respectively.

Protocol 4.1

approach is equivalent to one where Alice begins by using her source to produce all the
(n+m)-rounds and for our arguments we assume this is the case. In this section, we assume
that the measurements used in the source test are perfect; we will lift this assumption in
Section 4.4.
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Variable Definition
X The set {0,1}; alphabet for Alice’s random string.
Θ The set {0,1}; alphabet for the basis string.
Xn

1 The random string chosen by Alice at the beginning of the protocol.
Θn

1 Alice’s choice of randomly chosen basis. Θi = 0 if Alice chooses Z basis
and Θi = 1 if she chooses X basis.

An1 The quantum registers sent by Alice to Bob.
Θ̂n

1 Bob’s choice of randomly chosen basis. Θ̂i = 0 if Bob chooses Z basis and
Θ̂i = 1 if he chooses X basis.

Y n
1 Bob’s outcomes of measuring An1 in Θ̂n

1 basis.
S The set {i ∈ [n] ∶ Θ̂i = Θi}.
X̂S Bob’s guess of XS, produced at the end of the information reconciliation

step.
T Transcript for information reconciliation and raw key validation.
X̄n

1 For i ∈ [n], X̄i =Xi if Θi = Θ̂i else X̄i =⊥.
Ȳ n

1 For i ∈ [n], Ȳi = Yi if Θi = Θ̂i = 1 else Ȳi =⊥.
Cn

1 For i ∈ [n], Ci =Xi ⊕ Yi if Θi = Θ̂i = 1 else Ci =⊥.
Ĉn

1 For i ∈ [n], Ĉi = X̂i ⊕ Yi if Θi = Θ̂i = 1 else Ĉi =⊥.
E Eve’s register created after Eve processes and forwards the states An1 to

Bob.
Υ The event that the protocol does not abort, i.e., ∣{i ∈ SX ∶ Ĉi = 1}∣ ≤ eµ2n

and hash(XS) = hash(X̂S).
Υ′ The event that XS = X̂S.
Υ′′ The event that ∣{i ∈ SX ∶ Ci = 1}∣ ≤ eµ2n.

Table 4.1. Definition of variables for QKD

Let ρXn+m
1 Θn+m1 An+m1

be the state produced by the imperfect source, Ω denote the event
that the source test (Protocol 4.2) does not abort and let the output of the source test
protocol conditioned on Ω be the state ρ̄Xn

1 Θn1An1 ∣Ω (or the subnormalised state ρ̄Xn
1 Θn1An1∧Ω

depending on the context).

In the following lemma, we prove that ρ̄Xn
1 Θn1An1 ∣Ω has a relatively small smooth max-

relative entropy with a depolarised version of the perfect source using Theorem 4.1. We then
use the entropic triangle inequality to reduce the security of the BB84 protocol with the
imperfect source to that of a BB84 protocol, which uses this state as its source state.

77



Source test

Parameters:
– ε is the source error tolerated.
– m is the number of rounds on which the source is tested.
– n is the number of rounds produced by the source for use in the subsequent
protocol.

Protocol:
(1) The source produces the state ρXn+m

1 Θn+m1 An+m1
.

(2) Choose a random subset Γ ⊆ [n +m] of size m, measure the quantum registers
Ai in the basis given by Θi and let the result be X̂i.

(3) Abort the protocol (and any subsequent protocols) if the observed error
1
m ∣{k ∈ Γ ∶ X̂k ≠Xk}∣ > ε.

(4) Relabel the remaining registers from 1 to n and use them as the n registers for
the subsequent protocol.

Protocol 4.2

Lemma 4.2. Let ε be the threshold of the source test, δ ∈ (0,1) a small parameter, and let
ρ̂
(ε+δ)
XΘA ∶= (1 − 2(ε + δ))ρ̂XΘA + 2(ε + δ)ρ̂XΘ ⊗ τA where τA is the completely mixed state on the

register A. For the state ρ̄Xn
1 Θn1An1 ∣Ω produced by the source test conditioned on passing, we

have that

D
εf
max(ρ̄Xn

1 Θn1An1 ∣Ω∣∣ (ρ̂
(ε+δ)
XΘA)

⊗n
) ≤ nh(ε + δ) + log 1

Prρ(Ω) − εδqu
(4.6)

where Prρ(Ω) is the probability of the event Ω when the testing procedure is applied to the

state ρ, h(x) = −x log(x)−(1−x) log(1−x) is the binary entropy function and εf = 2
√

εδqu
Prρ(Ω)

for εδqu =
√

2 exp (− nδ2

2(n+2)m).

Proof. Define the unitaries,

V x,θ
A ∶=HθXx (4.7)

VXΘA ∶= ∑
x,θ

∣x, θ⟩ ⟨x, θ∣XΘ ⊗ V x,θ
A (4.8)

so that VXΘA ∣x, θ⟩ ∣0⟩ gives the perfect encoding of the BB84 state given x and θ. We also
define the state

νXn+m
1 Θn+m1 An+m1

∶=
n+m
⊗
i=1

V †
XiΘiAi ρXn+m

1 Θn+m1 An+m1

n+m
⊗
i=1

VXiΘiAi . (4.9)
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Note that if ρ were perfectly encoded, then ν would be the state ρXn+m
1 Θn+m1

⊗(∣0⟩ ⟨0∣)⊗(n+m).
Let the register Γ represent the choice of the random subset for sampling following
the notation in Theorem 4.1. The state produced by measuring the subset γ of the A
registers of ν in the computational ({∣0⟩ , ∣1⟩}) basis can equivalently be produced by
measuring the subset γ of the A registers of ρ in the basis given by the corresponding
Θ registers, adding (mod 2) the corresponding X register to the result and applying
the unitaries VXΘA on the remaining indices. Conditioning on the sampled qubits of ρ
being incorrectly encoded at most an ε fraction of the rounds is equivalent to measuring
the corresponding random subset of the qubits of ν in the computational basis and
conditioning on the relative weight of the result being less than ε (up to unitaries on
the remaining registers; formal expression is given in Eq. 4.19). Given this equivalence,
we can simply work with the state ν and transform the results back to the state ρ at the end.

Using Theorem 4.1, we have that for every xn+m1 , θn+m1 there exists ηΓAn+m1 ∣xn+m1 ,θn+m1
such

that
1
2
∥νΓAn+m1 ∣xn+m1 ,θn+m1

− ηΓAn+m1 ∣xn+m1 ,θn+m1
∥1 ≤ ε

δ
qu (4.10)

and

ηΓAn+m1 ∣xn+m1 ,θn+m1
∶= ∑

γ

p(γ) ∣γ⟩ ⟨γ∣ ⊗ η
(γ)
An+m1 ∣xn+m1 ,θn+m1

(4.11)

where p(γ) is the uniform distribution over all size m subsets of [n + m], and the state
η
(γ)
An+m1 ∣xn+m1 ,θn+m1

satisfies

η
(γ)
An+m1 ∣xn+m1 ,θn+m1

= Πδ∣γ
An+m1

η
(γ)
An+m1 ∣xn+m1 ,θn+m1

Πδ∣γ
An+m1

(4.12)

for the projectors Πδ∣γ
An+m1

defined as in Theorem 4.1 (our sampling procedure does not require
a random seed κ, so we omit it in our analysis). Note that using Hoeffding’s bound the
classical error probability for our sampling strategy is 2 exp(− nδ2

n+2m), which implies that εδqu =√
2 exp(− nδ2

2(n+2)m) for this strategy. We can also define the extended state ηΓXn+m
1 Θn+m1 An+m1

as

ηΓXn+m
1 Θn+m1 An+m1

∶= ∑
γ,xn+m1 ,θn+m1

p(γ)p(xn+m1 , θn+m1 )

∣γ, xn+m1 , θn+m1 ⟩ ⟨γ, xn+m1 , θn+m1 ∣ ⊗ η
(γ)
An+m1 ∣xn+m1 ,θn+m1

(4.13)

where p(xn+m1 , θn+m1 ) = ∏
n+m
i=1 p(xi, θi). Since, νΓXn+m

1 Θn+m1 An+m1
and ηΓXn+m

1 Θn+m1 An+m1
have the

same distributions on Xn+m
1 and Θn+m

1 , we also have that
1
2
∥νΓXn+m

1 Θn+m1 An+m1
− ηΓXn+m

1 Θn+m1 An+m1
∥ ≤ εδqu. (4.14)
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Define Ω′ to be the event that the result produced by measuring the subset of registers Aγ
in the computational basis, where γ is given by the Γ register, has a relative weight less
than ε. Let ν̄ΓXn

1 Θn1An1∧Ω′ be the subnormalised state produced when the relative weight of
the registers Aγ of νΓXn+m

1 Θn+m1 An+m1
is measured and conditioned on Ω′, the registers Xγ and

Θγ are traced over, and the remaining X,Θ and A registers are relabelled between 1 and n.
Also, let η̄ΓXn

1 Θn1An1∧Ω′ be the subnormalised state produced when this same subnormalised
channel is instead applied to ηΓXn+m

1 Θn+m1 An+m1
. Let us consider the action of this map on a

general state ∣γ⟩ ⟨γ∣ ⊗ σ
(γ)
An+m1

, which satisfies the condition σ
(γ)
An+m1

= Πδ∣γ
An+m1

σ
(γ)
An+m1

Πδ∣γ
An+m1

. For
such a state, we have

σ
(γ)
An+m1

= ∑
an+m1 ,ān+m1 ∈Bδγ

σ(γ)(an+m1 , ān+m1 ) ∣an+m1 ⟩ ⟨ān+m1 ∣ .

Let P̂Am1 ∶= ∑am1 ∶ω(am1 )≤ε ∣a
m
1 ⟩ ⟨am1 ∣ be the (perfect) measurement operator for conditioning on

the event Ω′. Then, the state after applying the measurement and conditioning on the Ω′ is

trAγ (P̂Aγσ
(γ)
An+m1

) = ∑
aγ ∶ω(aγ)≤ε

∑
a′γ̄ ,āγ̄∈{xn1 ∶

∣ω(xn1 )−ω(aγ)∣<δ}

σ(γ)(aγa
′
γ̄, aγ āγ̄) ∣a

′
γ̄⟩ ⟨āγ̄ ∣ .

We can relabel the remaining registers to get the state σ̄(γ)
An1∧Ω′ which can be put into the form

σ̄
(γ)
An1∧Ω′ = ∑

an1 ,ā
n
1 ∶∈{xn1 ∶ ω(xn1 )<ε+δ}

σ̄(γ)(an1 , ā
n
1) ∣a

n
1 ⟩ ⟨ā

n
1 ∣ . (4.15)

Let Qw
An1

be the projector on the set span{∣xn1 ⟩ ∶ for xn1 such that ω(xn1) < w} (note that these
vectors are perpendicular). Then, we have that

σ̄
(γ)
An1∧Ω′ = Qε+δ

An1
σ̄
(γ)
An1∧Ω′Qε+δ

An1
(4.16)

which implies that σ̄(γ)
An1∧Ω′ ≤ Qε+δ

An1
, since σ̄(γ)

An1∧Ω′ is subnormalised.

By considering σ(γ)
An+m1

= η
(γ)
An+m1 ∣xn+m1 θn+m1

, we see that η̄ satisfies

η̄ΓXn
1 Θn1An1∧Ω′ = ∑

γ,xn1 ,θ
n
1

p(γ)p(xn1θ
n
1 ) ∣γx

n
1θ

n
1 ⟩ ⟨γx

n
1θ

n
1 ∣ ⊗ η̄

(γ)
An1 ∣xn1 θn1 ∧Ω′

≤ ∑
γ,xn1 ,θ

n
1

p(γ)p(xn1θ
n
1 ) ∣γx

n
1θ

n
1 ⟩ ⟨γx

n
1θ

n
1 ∣ ⊗Q

ε+δ
An1

= ρΓ ⊗ ρ
⊗n
Xθ ⊗Q

ε+δ
An1
.

Using the data processing inequality, we also have that

1
2
∥ν̄ΓXn

1 Θn1An1∧Ω′ − η̄ΓXn
1 Θn1An1∧Ω′∥1 ≤ ε

δ
qu (4.17)
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Let η̂(ε+δ)A ∶= (1 − ε − δ) ∣0⟩ ⟨0∣ + (ε + δ) ∣1⟩ ⟨1∣ or equivalently the state η̂(ε+δ)A is the classical
probability distribution over {0,1} which is 1 with probability (ε + δ). For this distribution,
a simple calculation shows that

min
zn1 ∶ω(zn1 )<ε+δ

⟨zn1 ∣ (η̂
(ε+δ)
A )⊗n ∣zn1 ⟩ ≥ e

−nh(ε+δ)

which implies that

Qε+δ
An1

≤ enh(ε+δ)(η̂
(ε+δ)
A )⊗n.

Thus, we have

η̄Xn
1 Θn1An1∧Ω′ ≤ enh(ε+δ) (ρXΘ ⊗ η̂

(ε+δ)
A )

⊗n
. (4.18)

As noted earlier, the state produced by measuring the registers Aγ of ν in the computational
basis is the same as the state produced by measuring the same registers on the real state ρ
in the basis given by Θi, adding Xi to the result (mod 2), and transforming the remaining
registers with ⊗n

k=1 V
†
XiΘiAi . Under this correspondence, we have that the state produced by

the source test satisfies

ρ̄Xn
1 Θn1An1∧Ω =

n

⊗
i=1
VXiΘiAi ν̄Xn

1 Θn1An1∧Ω′

n

⊗
i=1
V †
XiΘiAi . (4.19)

Further, for the state defined as

¯̃ρXn
1 Θn1An1∧Ω ∶=

n

⊗
i=1
VXiΘiAi η̄Xn

1 Θn1An1∧Ω′

n

⊗
i=1
V †
XiΘiAi

≤ enh(ε+δ)
n

⊗
i=1

(VXiΘiAi ρXiΘi ⊗ η̂
(ε+δ)
Ai

V †
XiΘiAi)

= enh(ε+δ) (ρ̂
(ε+δ)
XΘA)

⊗n
(4.20)

where ρ̂(ε+δ)XΘA ∶= (1 − 2(ε + δ))ρ̂XΘA + 2(ε + δ)ρ̂XΘ ⊗ τA for the completely mixed state τA on
register A. Using Eq. 4.17, we also have

1
2
∥ρ̄Xn

1 Θn1An1∧Ω − ¯̃ρXn
1 Θn1An1∧Ω∥1 ≤ ε

δ
qu. (4.21)

Following the argument in Lemma A.14, we can show that
1
2
∥ρ̄Xn

1 Θn1An1 ∣Ω − ¯̃ρXn
1 Θn1An1 ∣Ω∥1 ≤

2εδqu

Prρ(Ω)
(4.22)

where Prρ(Ω) ∶= tr (ρ̄Xn
1 Θn1An1∧Ω) is the probability of the event Ω when the testing procedure

is applied to the state ρ, and

¯̃ρXn
1 Θn1An1 ∣Ω ≤

enh(ε+δ)

Prρ̃(Ω)
(ρ̂

(ε+δ)
XΘA)

⊗n

≤
enh(ε+δ)

Prρ(Ω) − εδqu
(ρ̂

(ε+δ)
XΘA)

⊗n
(4.23)
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where Prρ̃(Ω) ∶= tr ( ¯̃ρXn
1 Θn1An1∧Ω) is defined similar to Prρ(Ω). Together these imply that

D
εf
max(ρ̄Xn

1 Θn1An1 ∣Ω∣∣ (ρ̂
(ε+δ)
XΘA)

⊗n
) ≤ nh(ε + δ) + log 1

Prρ(Ω) − εδqu
(4.24)

where εf = 2
√

εδqu
Prρ(Ω) . �

We now give an outline for bounding the smooth min-entropy for a BB84-QKD protocol,
which uses an imperfect source. We give a complete formal proof in Appendix B.1. Let
ΦQKD be the CPTP map denoting the action of the entire QKD protocol on the source
states produced by Alice. In order to prove security for QKD, informally speaking, it is
sufficient to prove a linear lower bound for(4)

H
εf+ε′
min (XS ∣ETΘn

1 Θ̂n
1)ΦQKD(ρ̄∣Ω).

Let us define the virtual state σXn
1 Θn1An1 ∶= (ρ̂

(ε+δ)
XΘA)

⊗n
. This state can be viewed as the state

produced when each of the qubits produced by Alice is passed through a depolarising channel.
Using Lemma 3.5, for an arbitrary ε′ > 0, we have

H
εf+ε′
min (XS ∣ETΘn

1 Θ̂n
1)ΦQKD(ρ̄∣Ω) ≥ H̃

↑
α(XS ∣ETΘn

1 Θ̂n
1)ΦQKD(σ)

−
α

α − 1D
εf
max(ΦQKD(ρ̄∣Ω)∣∣ΦQKD(σ)) −

g1(ε′, εf)

α − 1

≥ H̃↑α(XS ∣ETΘn
1 Θ̂n

1)ΦQKD(σ) −
α

α − 1nh(ε + δ) −
O(1)
α − 1 .

Thus, it is sufficient to bound the α-Rényi conditional entropy H̃↑α(XS ∣ETΘn
1 Θ̂n

1) for the
QKD protocol running on a noisy version of the perfect source. We can now simply use
standard techniques developed for the security proofs of QKD to show a linear lower bound
for this conditional entropy. In particular, source purification can be used for the source
state σ. In Appendix B.1, we show how one can modify the security proof for BB84 based
on entropy accumulation to get the following bound.

Theorem 4.3. Suppose Alice uses the output of the source test (Protocol 4.2), with error
threshold ε and any imperfect source as its input, as her source for the BB84 protocol. Let
δ > 0 and assume that h(ε + δ) < 1√

2 . Then, for

εδqu =
√

2 exp(−
nδ2

2(n + 2)m) (4.25)

εpa = 2(
2εδqu

Prρ̄(Ω ∧Υ′′)
)

1/2

(4.26)

(4)We also need to condition on the QKD protocol not aborting. We do this in Appendix B.1
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and ε′ > 0, we have the following lower bound on the smooth min-entropy for the raw key
produced during the BB84 protocol

H
εpa+ε′
min (XS ∣EΘn

1 Θ̂n
1T )ΦQKD(ρ̄)∣Ω∧Υ′′

≥ n((1 − 2µ) log(2) − h(e) − µ2(1 − log(2)) − V
√

2h(ε + δ))

−
√
n(µ2 ln(2) + 2 log 1

Prρ̄(Ω ∧Υ′′)
+ g0 (

ε′

8 )) −
V

√
2h(ε + δ)

(log 1
Prρ̄(Ω ∧Υ′′) − 2εδqu

+ 1)

−
g1(

ε′

2 , εpa)

2
√

2h(ε + δ)
V − log ∣T ∣ − 3g0 (

ε′

8 ) (4.27)

where V ∶= 2
µ2 log 1−e

e + 2 log(1+ 2∣X ∣2), Prρ̄(Ω∧Υ′′) is the probability of the event Ω∧Υ′′ for
the state ΦQKD(ρ̄) and it is assumed that Prρ̄(Ω ∧ Υ′′) > 2εδqu

(5), g0(x) = − log(1 −
√

1 − x2)

and g1(x,y) = − log(1 −
√

1 − x2) − log(1 − y2).

According to the Theorem above, the asymptotic key rate for the BB84 protocol using an
imperfect source is V

√
2h(ε + δ) lesser than a protocol, which uses a perfect source. There is

a lot of room to improve the analysis used for the Theorem above (given in Appendix B.1).
We use the simplest possible techniques to demonstrate a complete security proof.

4.4. Imperfect measurements
In our analysis above, we assumed that the measurements used in the source test

are perfect. It should be noted that if the source produces states at a rate rs, then the
measurement device is only used at an average rate m

n+mrs, which is much smaller than
rs. So, the measurement devices have a much longer relaxation time than the source. As
such, it should be easier to create almost “perfect” measurement devices than it is to create
perfect sources.

In this section, we will show how measurement imperfections can also be incorporated
in our analysis. Let Λ (≤ ε∣γ, xγ, θγ)Aγ be the POVM element associated with the source
test passing, i.e., with measuring a relative weight less than ε with respect to the encoded
random bits given the choice of random subset γ, encoded random bits xγ, and basis choice
θγ. Informally speaking, in this subsection, we assume that this measurement measures
the relative weight with an error at most εm with high probability. To formally state our

(5)If Prρ̄(Ω∧Υ′′) ≤ 2εδqu, one can easily show that the secrecy condition for QKD is satisfied for a security
parameter greater than 2εδqu since this condition is weighted by the abort probability (Eq. 2.60).
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assumption, define

P̂
xγ ,θγ
Aγ

∶= ⊗
i∈γ
V xi,θi
Ai

⎛

⎝
∑

aγ ∶ω(aγ)≤ε+εm
∣aγ⟩ ⟨aγ ∣Aγ

⎞

⎠
⊗
i∈γ

(V xi,θi
Ai

)
† (4.28)

P̂
⊥∣xγ ,θγ
Aγ

∶= 1An1 −P̂
xγ ,θγ
Aγ

(4.29)

to be the projectors on the subspace with relative weight at most ε + εm, and at least
ε + εm with respect to xγ in the basis θγ. Here the parameter ε is the same as the source
error threshold in the previous section and εm > 0 is a small parameter quantifying the
measurement device error. The projector P̂ xγ ,θγ

Aγ
is the rotated version of projector P̂ , which

was used for the measurement map in the previous section. In this section, we need to use
the rotated version because the real measurements in an implementation will depend on the
inputs γ, xγ and θγ.

We assume that for some fixed small ξ > 0 the measurement elements {Λ (≤ ε∣γ, xγ, θγ)Aγ}γ,xγ ,θγ

satisfy the following for every collection of states {σ
(γ)
Aγ ∣xγθγ}γ,xγ ,θγ :

∑
γ

p(γ) ∑
xγ ,θγ

p(xγ, θγ) tr (Λ (≤ ε∣γ, xγ, θγ)Aγ P̂
⊥∣xγ ,θγ
Aγ

σ
(γ)
Aγ ∣xγθγ P̂

⊥∣xγ ,θγ
Aγ

) ≤ ξ. (4.30)

Stated in words, we require that for any collection of states {σ
(γ)
Aγ ∣xγθγ}γ,xγ ,θγ with a relative

weight larger than ε+ εm (lying in the subspace corresponding to the projector P̂ ⊥∣xγ ,θγAγ
), the

probability that a weight lesser than ε is measured is smaller than ξ when averaged over
the choice of the random set γ and xγ, θγ. Using this assumption on the measurements,
in Lemma 4.4 we will derive a smooth max-relative entropy bound similar to the one in
the previous section. The smoothing parameter of the relative entropy in this bound,
however, will depend on ξ, which in turn implies that the privacy amplification error of
the subsequent QKD protocol will be lower bounded by a function of ξ. It does not seem
that this dependence of the smoothing parameter on ξ can be avoided. For example, if the
measurements measure a small weight for a set of large weight states and the source emits
those states, then they can be exploited by Eve to extract additional information during the
QKD protocol. It also seems that we cannot use some kind of joint test for the source and
measurement device (similar to Protocol 4.2) without an additional assumption to ensure
that the weight measured by the measurement device is almost correct, since the source can
always embed its information using an arbitrary unitary and the measurement can always
decode that information using the same unitary.
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I.I.D. measurements with error ε′m or more generally measurements, which are guaranteed
to measure each input qubit correctly with probability at least (1 − ε′m) independent of the
previous rounds (both these examples consider measurements which measure the qubits
Aγ in the provided basis θγ to produce the results x̂γ and then use these results to test if
ω(xγ⊕ x̂γ) ≤ ε or not), satisfy the above assumption for the choice of some δ′ > 0, εm = ε′m+δ

′

and ξ = e−2mδ′2 (using the Chernoff-Hoeffding bound).

Additionally, since we average over the random set γ as well, it is possible to guar-
antee with high probability that for most test measurements the relaxation time of the
measurement device is large. This should enable us to model a large and practical class of
measurements using these assumptions. We leave the details for the specific measurement
model for future work.

We will show that for measurements, which satisfy the above assumption the following
lemma holds. One can use this bound in place Lemma 4.2 to prove a smooth min-entropy
lower bound for the QKD protocol, similar to the previous section. Note that the following
proof builds on the proof of Lemma 4.2 and makes use of definitions used in that proof.

Lemma 4.4. Suppose that the measurements used for the source test {Λ (≤ ε∣γ, xγ, θγ)Aγ}γ,xγ ,θγ

satisfy the assumption in Eq. 4.30 with parameters εm and ξ. Let ε be the
threshold of the source test, δ ∈ (0,1) a small parameter, and let ρ̂

(ε+εm+δ)
XΘA ∶=

(1 − 2(ε + εm + δ))ρ̂XΘA + 2(ε + εm + δ)ρ̂XΘ ⊗ τA where τA is the completely mixed
state on the register A. Let the event Ωim denote that the source test using the imperfect
measurements succeeds and let state ρ′

Xn
1 Θn1An1 ∣Ωim

denote the state produced by the source test
conditioned on passing. For this state, we have that

D
εf
max(ρ

′
Xn

1 Θn1An1 ∣Ωim
∣∣ (ρ̂

(ε+εm+δ)
XΘA )

⊗n
) ≤ nh(ε + εm + δ) + 2 + log 1

Prρ(Ωim) − εδqu

+ log 1
4ξ(Prρ(Ωim) − εδqu − 4ξ) (4.31)

where Prρ(Ωim) is the probability of the event Ωim when the testing procedure is applied to
the state ρ, h(x) = −x log(x) − (1 − x) log(1 − x) is the binary entropy function and εf ∶=

2ξ1/2
√

Prρ(Ωim)−εδqu
+ 2

√
εδqu

Prρ(Ωim) for εδqu =
√

2 exp (− nδ2

2(n+2)m)

Proof. For every xn+m1 and θn+m1 , we define the following appropriately rotated versions of
the projector Πδ∣γ

An+m1
given by Theorem 4.1, so that we can compare the relative weight with
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the string xn+m1 in the basis given by θn+m1 .

Π̄δ∣γ,xn+m1 ,θn+m1
An+m1

∶=
n+m
⊗
i=1

V xi,θi
Ai

Πδ∣γ
An+m1

n+m
⊗
i=1

(V xi,θi
Ai

)† (4.32)

where the unitaries V xi,θi
Ai

are defined in Eq. 4.8. We use the state η from the previous section
(Eq. 4.13) to define the state

ρ̃ΓXn+m
1 Θn+m1 An+m1

∶=
n+m
⊗
i=1

VXiΘiAiηΓXn+m
1 Θn+m1 An+m1

n+m
⊗
i=1

V †
XiΘiAi . (4.33)

Using the distance bound proven in Eq. 4.14 and the definition of ν in Eq. 4.9, we have

1
2
∥ρΓXn+m

1 Θn+m1 An+m1
− ρ̃ΓXn+m

1 Θn+m1 An+m1
∥1 ≤ ε

δ
qu

The conditional states ρ̃(γ)
An+m1 ∣xn+m1 θn+m1

of the state ρ̃ above satisfy

Π̄δ∣γ,xn+m1 ,θn+m1
An+m1

ρ̃
(γ)
An+m1 ∣xn+m1 θn+m1

Π̄δ∣γ,xn+m1 ,θn+m1
An+m1

=
n+m
⊗
i=1

V xi,θi
Ai

Πδ∣γ
An+m1

n+m
⊗
i=1

(V xi,θi
Ai

)†ρ̃
(γ)
An+m1 ∣xn+m1 θn+m1

n+m
⊗
i=1

V xi,θi
Ai

Πδ∣γ
An+m1

n+m
⊗
i=1

(V xi,θi
Ai

)†

=
n+m
⊗
i=1

V xi,θi
Ai

Πδ∣γ
An+m1

η
(γ)
An+m1 ∣xn+m1 θn+m1

Πδ∣γ
An+m1

n+m
⊗
i=1

(V xi,θi
Ai

)†

=
n+m
⊗
i=1

V xi,θi
Ai

η
(γ)
An+m1 ∣xn+m1 θn+m1

n+m
⊗
j=1

(V xi,θi
Ai

)†

= ρ̃
(γ)
An+m1 ∣xn+m1 θn+m1

where we have used the definition of ρ̃(γ)
An+m1 ∣xn+m1 θn+m1

(Eq. 4.33) in the second equality, and
Eq. 4.12 for the fourth line.

We call the subnormalised state produced after performing the (imperfect) measurements
on the states ρΓXn+m

1 Θn+m1 An+m1
, conditioning on the event Ωim and tracing over the registers

XΓ and ΘΓ as ρ′ΓXΓ̄ΘΓ̄AΓ̄∧Ωim
. Similarly, we let ρ̃′ΓXΓ̄ΘΓ̄AΓ̄∧Ωim

denote the subnormalised state
produced when this subnormalised map is applied to ρ̃ΓXn+m

1 Θn+m1 An+m1
. We have that

ρ̃′ΓXΓ̄ΘΓ̄AΓ̄∧Ωim = ∑
γ,xγ̄ ,θγ̄

p(γ)p(xγ̄, θγ̄) ∣γ, xγ̄, θγ̄⟩ ⟨γ, xγ̄, θγ̄ ∣ ⊗

∑
xγ ,θγ

p(xγ, θγ) trAγ (Λ (≤ ε∣γ, xγ, θγ)Aγ ρ̃
(γ)
AγAγ̄ ∣xn+m1 θn+m1

)

≤ 2 ∑
γ,xγ̄ ,θγ̄

p(γ)p(xγ̄, θγ̄) ∣γ, xγ̄, θγ̄⟩ ⟨γ, xγ̄, θγ̄ ∣ ⊗

[ ∑
xγ ,θγ

p(xγ, θγ) trAγ (Λ (≤ ε∣γ, xγ, θγ)Aγ P̂
xγ ,θγ
Aγ

ρ̃
(γ)
AγAγ̄ ∣xn+m1 θn+m1

P̂
xγ ,θγ
Aγ

)

86



+ ∑
xγ ,θγ

p(xγ, θγ) trAγ (Λ (≤ ε∣γ, xγ, θγ)Aγ P̂
⊥∣xγ ,θγ
Aγ

ρ̃
(γ)
AγAγ̄ ∣xn+m1 θn+m1

P̂
⊥∣xγ ,θγ
Aγ

) ]

≤ 2 ∑
γ,xγ̄ ,θγ̄

p(γ)p(xγ̄, θγ̄) ∣γ, xγ̄, θγ̄⟩ ⟨γ, xγ̄, θγ̄ ∣ ⊗

∑
xγ ,θγ

p(xγ, θγ) trAγ (Λ (≤ ε∣γ, xγ, θγ)Aγ P̂
xγ ,θγ
Aγ

ρ̃
(γ)
AγAγ̄ ∣xn+m1 θn+m1

P̂
xγ ,θγ
Aγ

)

+ 2ξµΓXΓ̄ΘΓ̄AΓ̄

where we have used the pinching inequality (see, for example [Tom16, Section 2.6.3]) in the
second line, defined the state µΓXΓ̄ΘΓ̄AΓ̄

as the normalization of the state

∑
γ,xγ̄ ,θγ̄

p(γ)p(xγ̄, θγ̄) ∣γ, xγ̄, θγ̄⟩ ⟨γ, xγ̄, θγ̄ ∣ ⊗

∑
xγ ,θγ

p(xγ, θγ) trAγ (Λ (≤ ε∣γ, xγ, θγ)Aγ P̂
⊥∣xγ ,θγ
Aγ

ρ̃
(γ)
AγAγ̄ ∣xn+m1 θn+m1

P̂
⊥∣xγ ,θγ
Aγ

)

and used

tr( ∑
γ,xγ̄ ,θγ̄

p(γ)p(xγ̄, θγ̄) ∣γ, xγ̄, θγ̄⟩ ⟨γ, xγ̄, θγ̄ ∣ ⊗

∑
xγ ,θγ

p(xγ, θγ) trAγ (Λ (≤ ε∣γ, xγ, θγ)Aγ P̂
⊥∣xγ ,θγ
Aγ

ρ̃
(γ)
AγAγ̄ ∣xn+m1 θn+m1

P̂
⊥∣xγ ,θγ
Aγ

))

= ∑
γ,xγ̄ ,θγ̄

p(γ)p(xγ̄, θγ̄) ∑
xγ ,θγ

p(xγ, θγ) tr (Λ (≤ ε∣γ, xγ, θγ)Aγ P̂
⊥∣xγ ,θγ
Aγ

ρ̃
(γ)
AγAγ̄ ∣xn+m1 θn+m1

P̂
⊥∣xγ ,θγ
Aγ

)

= ∑
γ

p(γ) ∑
xγ ,θγ

p(xγ, θγ) tr
⎛

⎝
Λ (≤ ε∣γ, xγ, θγ)Aγ P̂

⊥∣xγ ,θγ
Aγ

⎛

⎝
∑
xγ̄ ,θγ̄

p(xγ̄, θγ̄)ρ̃
(γ)
Aγ ∣xn+m1 θn+m1

⎞

⎠
P̂
⊥∣xγ ,θγ
Aγ

⎞

⎠

≤ ξ,

which follows from our assumption about the measurements (Eq. 4.30). Therefore, we have

ρ̃′ΓXΓ̄ΘΓ̄AΓ̄∧Ωim ≤ 2 ∑
γ,xγ̄ ,θγ̄

p(γ)p(xγ̄, θγ̄) ∣γ, xγ̄, θγ̄⟩ ⟨γ, xγ̄, θγ̄ ∣ ⊗

∑
xγ ,θγ

p(xγ, θγ) trAγ (Λ (≤ ε∣γ, xγ, θγ)Aγ P̂
xγ ,θγ
Aγ

ρ̃
(γ)
AγAγ̄ ∣xn+m1 θn+m1

P̂
xγ ,θγ
Aγ

)

+ 2ξµΓXΓ̄ΘΓ̄AΓ̄

≤ 2 ∑
γ,xγ̄ ,θγ̄

p(γ)p(xγ̄, θγ̄) ∣γ, xγ̄, θγ̄⟩ ⟨γ, xγ̄, θγ̄ ∣ ⊗

∑
xγ ,θγ

p(xγ, θγ) trAγ (P̂
xγ ,θγ
Aγ

ρ̃
(γ)
AγAγ̄ ∣xn+m1 θn+m1

) + 2ξµΓXΓ̄ΘΓ̄AΓ̄

≤ 2¯̃ρ(ε+εm)
ΓXΓ̄ΘΓ̄AΓ̄∧Ω + 2ξµΓXΓ̄ΘΓ̄AΓ̄
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where the state ¯̃ρ(ε+εm)
ΓXΓ̄ΘΓ̄AΓ̄∧Ω is the state produced when the perfect measurement is used to

measure Aγ and condition the state ρ̃ΓXn+m
1 Θn+m1 An+m1

on the event that the relative weight
of the measured results is lesser than ε + εm from the string contained in Xγ. This is the
state, which was used in the previous section to derive the smooth max-relative entropy
bound. The only difference being that the threshold for the relative weight of the perfect
measurement in the last section was ε. Thus, we can use the previously derived bound in
Eq. 4.20 for this state by simply replacing ε with ε + εm. Relabelling the remaining registers
between 1 and n, tracing over the Γ register and using the Eq. 4.20, we get

ρ̃′Xn
1 Θn1An1∧Ωim ≤ 2¯̃ρ(ε+εm)

Xn
1 Θn1An1∧Ω + 2ξµXn

1 Θn1An1

≤ enh(ε+εm+δ)+1 (ρ̂
(ε+εm+δ)
XΘA )

⊗n
+ 2ξµXn

1 Θn1An1 (4.34)

where ρ̂(ε+εm+δ)XΘA ∶= (1 − 2(ε + εm + δ))ρ̂XΘA + 2(ε + εm + δ)ρ̂XΘ ⊗ τA. As before using the data
processing inequality, we have

1
2 ∥ρ′Xn

1 Θn1An1∧Ωim − ρ̃′Xn
1 Θn1An1∧Ωim∥

1
≤ εδqu. (4.35)

Once again following the argument in Lemma A.14, the conditional states satisfy

1
2 ∥ρ′Xn

1 Θn1An1 ∣Ωim
− ρ̃′Xn

1 Θn1An1 ∣Ωim
∥

1
≤

2εδqu

Prρ(Ωim)
(4.36)

for Prρ(Ωim) ∶= tr (ρ′Xn
1 Θn1An1∧Ωim

), defined as the probability that the Protocol 4.2 does not
abort with the imperfect measurements and

ρ̃′Xn
1 Θn1An1 ∣Ωim

≤
enh(ε+εm+δ)+1

Prρ̃(Ωim)
(ρ̂

(ε+εm+δ)
XΘA )

⊗n
+

4ξ
Prρ̃(Ωim)

µXn
1 Θn1An1
2 . (4.37)

where Prρ̃(Ωim) ∶= tr (ρ̃′Xn
1 Θn1An1∧Ωim

). For 0 < µ < 1, the hypothesis testing relative entropy
[WR12] is defined as

Dµ
h(ρ∣∣σ) ∶= − inf {log tr(σQ) ∶ 0 ≤ µQ ≤ 1 , and tr(ρQ) ≥ 1} . (4.38)

Equivalently, using semidefinite programming duality (see [Wat20]) it can be shown that

Dµ
h(ρ∣∣σ) = − sup{log(λ − tr(Y )) ∶ Y ≥ 0, λ ≥ 0, and λρ ≤ σ + µY } (4.39)

= inf {logλ′ − log(1 − tr(Z)) ∶ Z ≥ 0, λ′ ≥ 0, and ρ ≤ λ′σ + µZ} . (4.40)

Thus, Eq. 4.37 implies

Dµ
h(ρ̃

′
Xn

1 Θn1An1 ∣Ωim
∣∣(ρ̂

(ε+εm+δ)
XΘA )⊗n) ≤ nh(ε + εm + δ) + 2 + log 1

Prρ̃(Ωim)
(4.41)
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for µ ∶= 4ξ
Prρ̃(Ωim) . Using [Wat20, Theorem 5.11] (originally proven in [ABJT19]), this implies

that(6)

D
√
µ

max(ρ̃
′
Xn

1 Θn1An1 ∣Ωim
∣∣(ρ̂

(ε+εm+δ)
XΘA )⊗n) ≤ nh(ε + εm + δ) + 2 + log 1

Prρ̃(Ωim)
+ log 1

µ(1 − µ) (4.42)

Using the triangle inequality, we can state this in terms of the real state ρ̃′
Xn

1 Θn1An1 ∣Ωim

D
εf
max(ρ

′
Xn

1 Θn1An1 ∣Ωim
∣∣ (ρ̂

(ε+εm+δ)
XΘA )

⊗n
) ≤ nh(ε + εm + δ) + 2 + log 1

Prρ(Ωim) − εδqu

+ log 1
4ξ(Prρ(Ωim) − εδqu − 4ξ) (4.43)

for εf ∶= 2ξ1/2
√

Prρ(Ωim)−εδqu
+ 2

√
εδqu

Prρ(Ωim) . Note that if ξ = exp(−Ω(m)), then the last term in

the bound above adds O(m) to the smooth max-relative entropy, so it cannot be chosen to
be too small (This seems to be an artifact of the bound in [Wat20, Theorem 5.11], and it
should be possible to improve this dependence). �

4.5. Discussion and future work
We demonstrated a general method to reduce the security of the BB84 protocol with

an imperfect source with source correlations to that of the BB84 protocol with an almost
perfect source. In order to minimise the rate loss and privacy amplification error, we used a
source test to test the output of the imperfect source before using it for the QKD protocol.
Theorem 4.3 gives a simple bound on the smooth min-entropy for the BB84 protocol which
uses the output of the source test. According to this bound, for a source error of ε, the
rate of the QKD protocol decreases by O((ε log 1

ε )
1/2) and the privacy amplification error

can be made arbitrarily small assuming perfect measurements are used for the source test.
With imperfect measurements, satisfying a very broad assumption, we showed that the rate
decrease is similar to the perfect case and the privacy amplification error depends on an error
parameter of the measurements. This error parameter too can be made arbitrarily small
under further reasonable physical assumptions, like independence of the measurement errors
or almost perfect behaviour given a sufficient relaxation time. We leave the details of such a
physical model and its relation to our assumption on the measurements for future work. It
should be noted that one could also place physical assumptions on the source, which would
guarantee that it passes the source test and hence imply security for the protocol. Further,
if the source can be guaranteed to pass the source test with a high probability (which can

(6)The smoothing for Dε
max(ρ∣∣σ) in [Wat20] is defined using the trace distance instead of purified

distance, which we use here. It can, however, be verified that the proof there also works with purified
distance.
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be made arbitrarily close to 1), say 1 − εs, then the source test need not even be performed
before the QKD protocol. The error εs can simply be added to the QKD security parameter.
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Chapter 5

Universal chain rules

5.1. Introduction
As mentioned in Chapter 1, we can decompose the von Neumann entropy of a large

system An1 given B into a sum of the entropies of its parts as:

H(An1 ∣B)ρ =
n

∑
k=1
H(Ak∣A

k−1
1 B)ρ. (5.1)

However, it is easy to demonstrate that a smooth min-entropy counterpart for this relation
cannot hold true. Mathematically, a relation of the following form cannot be valid for ε in a
neighborhood of 0:

H
g1(ε)
min (An1 ∣B)ρ ≥

n

∑
k=1
Hε

min(Ak∣A
k−1
1 B)ρ − ng2(ε) − k(ε), (5.2)

where the functions g1, g2, and k are dependent solely on ε and ∣A∣ (the dimension of the Ak
registers, assumed to be constant in n) and are independent of n. Furthermore, g1(ε) and
g2(ε) are required to be small functions of ε, meaning they are continuous and approach 0
as ε tends to 0.

The impossibility of a bound of the form in Eq. 5.2 implies that Hε
min(A

n
1 ∣B)ρ can-

not be lower bounded meaningfully in terms of the min-entropies of the approximation
chain states of ρ, since these approximation chain states can simply be states satisfying
Hmin(Ak∣Ak−1

1 B)σ(k) = H
ε
min(Ak∣A

k−1
1 B)ρ for every k. On the other hand, the von Neumann

entropy of a state can easily be bounded in terms of its approximation chain by using the
continuity of the conditional von Neumann entropy [AF04,Win16] to modify Eq. 5.1 and
derive:

H(An1 ∣B)ρ ≥
n

∑
k=1
H(Ak∣A

k−1
1 B)σ(k) − nf(ε) (5.3)



where f(ε) = O (ε log ∣A∣
ε ). The absence of a comparable bound for the smooth min-entropy

severely limits us. As we will see in the next chapter, it is often useful to initially prove
novel results using von Neumann entropies before translating them into the corresponding
one-shot entropies. This approach separates the complexity of the problem into two distinct
phases. The impossibility of Eq. 5.2 prevents us from porting arguments based on the von
Neumann entropy into smooth min-entropy arguments.

There are multiple alternative definitions of the smooth min-entropy, which are equal to
the one we defined above up to a constant [Ren06,TRSS10,ABJT20]. One of these, is
the H↓min min-entropy and its smoothed variant H↓,εmin, defined as:

H↓min(A∣B)ρ ∶= sup{λ ∈ R ∶ ρAB ≤ e−λ 1A⊗ρB} (5.4)

H↓,εmin(A∣B)ρ ∶= sup
ρ̃
H↓min(A∣B)ρ̃ (5.5)

where the supremum is over all subnormalised states ρ̃AB which are ε-close to the state ρ in
the purified distance. [TRSS10, Lemma 20] showed that this smooth min-entropy is equal
to Hε

min up to a constant:

H
ε/2
min(A

n
1 ∣B)ρ −O (log 1

ε
) ≤H↓,εmin(A

n
1 ∣B)ρ ≤H

ε
min(A

n
1 ∣B)ρ. (5.6)

One can now ask whether H↓,εmin satisfies a chain rule like Eq. 5.2, that is, does

H
↓,g1(ε)
min (An1 ∣B)ρ ≥

n

∑
k=1

H↓,εmin(Ak∣A
k−1
1 B)ρ − ng2(ε) − k(ε), (5.7)

hold true for some g1, g2 and k as in Eq. 5.2? Remarkably, we prove that this is indeed the
case. Establishing this in Theorem 5.7 is the first main result of this chapter. We call this
a universal chain rule for the smooth min-entropy to emphasise the fact that it is true and
meaningful for a constant ε ∈ (0,1) and an arbitrary n ∈ N. This universal chain rule can be
viewed as a smoothed generalisation of the chain rule for H↓min:

H↓min(A
n
1 ∣B)ρ ≥

n

∑
k=1
H↓min(Ak∣A

k−1
1 B)ρ, (5.8)

which is well known and fairly simple to prove [Tom16, Proposition 5.5]. The universal
chain rule in Eq. 5.7 is particularly interesting because it can be used to decompose the
smooth min-entropy (both Hε

min and H↓,εmin) into a sum of conditional entropies, which are
equally strong.

We provide two proofs for this chain rule. We briefly describe the first proof technique
here, since it is simpler and we use it to prove the unstructured approximate entropy accumu-
lation theorem as well. For this we use the simple entropic triangle inequality (Lemma 3.6)
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which allows us to bound the smooth min-entropy of the state ρ in Eq. 5.7 with the min-
entropy of an auxiliary state σ as

Hδ
min(A

n
1 ∣B)ρ ≥Hmin(A

n
1 ∣B)σ −D

δ
max(ρ∣∣σ). (5.9)

Using the Generalised Golden-Thompson inequality [SBT17], we identify a state σAn1B sat-
isfying

Dm(ρAn1B ∣∣σAn1B) ≤ ng(ε) (5.10)

Hmin(A
n
1 ∣B)σ ≥

n

∑
k=1

H↓,εmin(Ak∣A
k−1
1 B)ρ (5.11)

where Dm is the measured relative entropy and g(ε) is a small function of ε. Selecting
an appropriate state σ is the most non-trivial part of the proof. The bound in Eq. 5.10
can further be transformed into a smooth max-relative entropy bound using the substate
theorem (Theorem 2.26). Putting these bounds together into the triangle inequality yields
the universal chain rule.

The second major result in this chapter is an unstructured approximate entropy ac-
cumulation theorem (Theorem 5.8). The entropy accumulation theorem (EAT) can only
be used for states ρAn1Bn1E satisfying the Markov chain Ak−1

1 ↔ Bk−1
1 E ↔ Bk for every

k ∈ [n], which are produced by applying maps Mk ∶ Rk−1 → AkBkRk sequentially so that
ρAn1Bn1E = trRn ○Mn ○⋯○M1(ρ

(0)
R0E

). In Theorem 5.8, we significantly relax the conditions on
the structure of the state required to obtain an EAT like bound. We show that for any state
ρAn1Bn1E with an approximation chain (σ

(k)
Ak1B

k
1E

)nk=1 such that for every 1 ≤ k ≤ n:

σ
(k)
Ak1B

k
1E

= N k (σ̃
(k)
Ak−1

1 Bk−1
1 ERk

) (5.12)

for some state σ̃(k)
Ak−1

1 Bk−1
1 ERk

and a channel N k ∶ Rk → AkBk which samples Bk independent
of the previous registers(1), we have the bound

H
Õ(ε1/6)
min (An1 ∣B

n
1E)ρ ≥

n

∑
k=1

inf
ωRkR̃k

H(Ak∣BkR̃k)Mk(ω) − nÕ(ε1/12) − Õ (
1

ε5/12) (5.13)

where the infimum is over all states ωRkR̃k and Õ hides logarithmic factors in 1/ε. This bound
holds irrespective of the process which produces the state. In fact, the central motivation
behind proving this theorem was using it to prove the security of parallel DIQKD. We do
this in the next chapter. The proof approach for this theorem is very similar to that of
Theorem 5.7.

(1)Two points are worth noting. First, this condition is typically satisfied in applications of EAT. Second,
if one strengthens the Markov chain condition for EAT, such that the Markov chain Ak−1

1 ↔ Bk−1
1 E ↔ Bk

holds for all inputs to the channelsMk, then this seems to reduce to the independence condition used here.
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5.1.1. Key lemmas and theorems

As stated above, the entropic triangle inequalities proven in Lemma 3.5 and 3.6 serve
as key tools for our proofs. The quantum substate theorem stated in Sec. 2.5 is one of the
major results used to bound the smooth max-relative entropy in this chapter. We use the
following form of the theorem here:

D
√
ε

max(ρ∣∣σ) ≤
Dm(ρ∣∣σ) + 1

ε
+ log 1

1 − ε. (5.14)

where ρ and σ are normalised states and ε ∈ (0,1). Usually, this bound is stated with the
relative entropy D(ρ∣∣σ) on the right-hand side. However, as we discuss in Sec. 2.5, we can
strengthen this to Dm.

In addition to the quantum substate theorem, the following generalisation of the Golden-
Thompson (GT) inequality is another major result enabling the proof approach used in this
chapter.

Theorem 5.1 (Generalised Golden-Thompson (GT) Inequality [SBT17]). For a collection
of Hermitian matrices {Hk}nk=1, we have

tr exp(
n

∑
k=1
Hk) ≤ ∫

∞

−∞
dtβ0(t) tr (eHne 1−it

2 Hn−1⋯ e
1−it

2 H2eH1e
1+it

2 H2⋯ e
1+it

2 Hn−1) (5.15)

where β0(t) ∶=
π
2 (cosh(πt) + 1)−1 is a probability density function.

Proof. Using [SBT17, Corollary 3.3], we have

log ∥exp(
n

∑
k=1

1
2Hk)∥

2
≤ ∫

∞

−∞
dtβ0(t) log ∥

n

∏
k=1

exp(
1 + it

2 Hk)∥
2
. (5.16)

Expanding the norm gives

1
2 log tr(exp(

n

∑
k=1
Hk)) ≤ ∫

∞

−∞
dtβ0(t)

1
2 log tr (eHne 1−it

2 Hn−1⋯e
1−it

2 H2eH1e
1+it

2 H2⋯e
1+it

2 Hn−1) .

(5.17)

Using the concavity and monotonicity of log, we get the statement in the Theorem. �

The GT inequality above is often used in conjunction with the following variational
expressions for the relative entropies. This is also the case in this chapter.
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Lemma 5.2 ( [Pet88,BFT17]). For a normalised state ρ and a positive operator Q, the
following variational forms hold true(2):

D(ρ∣∣Q) = sup
ω>0

{tr(ρ logω) + 1 − tr exp(logQ + logω)} (5.18)

Dm(ρ∣∣Q) = sup
ω>0

{tr(ρ logω) + 1 − tr(Qω)} . (5.19)

We will also use the following lemma, which is a quantum generalisation of the fact that
if two probability distributions pAB and qAB are close to each other, then the probability
distributions pAB and pBqA∣B are also close to each other.

Lemma 5.3. For a normalised state ρAB and a subnormalised state ρ̃AB such that
P (ρAB, ρ̃AB) ≤ ε, the state ηAB ∶= ρ

1/2
B ρ̃

−1/2
B ρ̃ABρ̃

−1/2
B ρ

1/2
B (ρ̃−1/2

B is the Moore-Penrose pseudo-
inverse) satisfies P (ρAB, ηAB) ≤ (

√
2 + 1)ε. Note that if ρ̃B is full rank, then ηB = ρB.

Proof. Note that since ρAB is normalised, we have F (ρ̃AB, ρAB) ≥ 1 − ε2. Let ∣ρ̃⟩ABR be
an arbitrary purification of ρ̃AB. Observe that the pure state ∣η⟩ ∶= ρ

1/2
B ρ̃

−1/2
B ∣ρ̃⟩ABR is a

purification of ηAB.

Let ∣ρ̃⟩ABR = ∑i

√
p̃i ∣ui⟩B ⊗∣vi⟩AR where all pi > 0 be the Schmidt decomposition of ρ̃ABR.

This implies ρ̃B = ∑i p̃i ∣ui⟩ ⟨ui∣B. Then, using Uhlmann’s theorem [Wat18, Theorem 3.22],
we have

F (ρ̃AB, ηAB) ≥ ∣ ⟨ρ̃∣η⟩ ∣2

= ∣⟨ρ̃∣ρ
1/2
B ρ̃

−1/2
B ∣ρ̃⟩∣

2

= ∣tr (ρ1/2
B ρ̃

−1/2
B ρ̃ABR)∣

2

= ∣tr (ρ1/2
B ρ̃

1/2
B )∣

2

≥ F (ρ̃B, ρB)
2

≥ (1 − ε2)2

≥ 1 − 2ε2

where we have used the relation between the pretty good fidelity and fidelity [IRS17, Eq.
44] for the first inequality and the fact that F (ρ̃B, ρB) ≥ F (ρ̃AB, ρAB). Further, we have

P (ρ̃AB, ηAB) =
√

1 − F∗(ρ̃AB, ηAB)

(2)log and exp are required to have base e for this lemma.
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≤
√

1 − F (ρ̃AB, ηAB)

≤
√

2ε.

Using the triangle inequality, we get

P (ρAB, ηAB) ≤ P (ρAB, ρ̃AB) + P (ρ̃AB, ηAB)

≤ (
√

2 + 1)ε.

�

5.2. A universal chain rule for smooth min-entropy
In this section, we will prove the universal chain rule for H↓,εmin. Specifically, we will show

that for a state ρAn1B,

H
↓,g1(ε)
min (An1 ∣B)ρ ≥

n

∑
k=1

H↓,εmin(Ak∣A
k−1
1 B)ρ − ng2(ε) − k(ε), (5.20)

where g1 and g2 are small functions of ε (g1 and g2 are continuous and tend to 0 as ε → 0)
and k is a general function of ε. It should be noted that these functions may depend on ∣A∣,
which is the size of the individual registers Ak. We begin by sketching the proof of such a
chain rule in the classical case first. This will be beneficial for understanding the challenges
that need to be solved in order to prove the statement in the quantum case. We will then
generalise this proof to the quantum case. In Sec. 5.4, we provide an alternate proof for this
chain rule.

5.2.1. Proof sketch for classical distributions

Consider the probability distribution pAn1B. We will sketch a proof for a chain rule of the
form in Eq. 5.20 for ρ = p. Let us first broadly describe the proof strategy. We will identify
an auxiliary distribution p(aux)

An1B
, such that

D
g1(ε)
max (pAn1B ∣∣p

(aux)
An1B

) ≤ ng2(ε) + k(ε) and (5.21)

Hmin(A
n
1 ∣B)p(aux) ≥

n

∑
k=1
H↓,εmin(Ak∣A

k−1
1 B)p (5.22)

where g1, g2 and k are as in Eq. 5.20. Then, we can simply use the entropic triangle inequality
to show that

H
g1(ε)
min (An1 ∣B)p ≥Hmin(A

n
1 ∣B)p(aux) −D

g1(ε)
max (pAn1B ∣∣p

(aux)
An1B

) (5.23)

≥
n

∑
k=1
H↓,εmin(Ak∣A

k−1
1 B)p − ng2(ε) − k(ε). (5.24)
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p(aux) will be defined using the distributions which achieve H↓,εmin(Ak∣A
k−1
1 B)p. For k ∈ [n],

let q(k)
Ak1B

be the distribution, such that

1
2 ∥pAk1B − q

(k)
Ak1B

∥
1
≤ ε (5.25)

Hε,↓
min(Ak∣A

k−1
1 B)p =H

↓
min(Ak∣A

k−1
1 B)q(k) (5.26)

It is easy to show that we also have
1
2 ∥pAk1B − pAk−1

1 Bq
(k)
Ak ∣Ak−1

1 B
∥

1
≤ 2ε. (5.27)

We can define an auxiliary distribution as qAn1B ∶= pB∏
n
k=1 q

(k)
Ak ∣Ak−1

1 B
. For this distribution,

the conditional min-entropy satisfies (Eq. 2.35),

H↓min(Ak∣A
k−1
1 B)q =H

↓
min(Ak∣A

k−1
1 B)q(k) =H

ε,↓
min(Ak∣A

k−1
1 B)p (5.28)

for every k since qAk ∣Ak−1
1 B = q

(k)
Ak ∣Ak−1

1 B
. Further, we can bound the min-entropy for this

distribution as desired in Eq. 5.22 as

Hmin(A
n
1 ∣B)q ≥H

↓
min(A

n
1 ∣B)q ≥

n

∑
k=1
H↓min(Ak∣A

k−1
1 B)q (5.29)

Next, we need to ensure that the smooth max-divergence between p and q is relatively small.
Our strategy will be to bound the relative entropy between these two distributions and use
the substate theorem to convert that to a bound for the smooth max-divergence. We expect
to be able to use the following chain rule for the relative entropy

D(pAk1B ∣∣qAk1B) =D(pAk−1
1 B ∣∣qAk−1

1 B) +D(pAk1B ∣∣pAk−1
1 BqAk ∣Ak−1

1 B) (5.30)

to prove that the relative entropy distance between pAn1B and qAn1B is small. Using this
repeatedly along with the fact that qAk ∣Ak−1

1 B = q
(k)
Ak ∣Ak−1

1 B
, gives us

D(pAn1B ∣∣qAn1B) =
n

∑
k=1

D(pAk1B ∣∣pAk−1
1 Bq

(k)
Ak ∣Ak−1

1 B
). (5.31)

If we could now show that each term inside the summation is some small function in ε, g(ε),
we could show that the D(pAn1B ∣∣qAn1B) is bounded by ng(ε). Eq. 5.27 shows that the two
distributions in each of the terms are close to each other. However, the relative entropy be-
tween them need not be small or even bounded, since it could be that pAk1B /≪ pAk−1

1 Bq
(k)
Ak ∣Ak−1

1 B
.

To circumvent this technicality, we need to massage the distributions q(k)
Ak ∣Ak−1

1 B
by a small

amount. This is done by mixing these distributions with the uniform distribution uAk to
produce the distributions

r
(k)
Ak ∣Ak−1

1 B
= (1 − δ)q(k)

Ak ∣Ak−1
1 B

+ δuAk . (5.32)
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For these distributions, we can show that (Lemma C.3)
1
2 ∥pAk1B − pAk−1

1 Br
(k)
Ak ∣Ak−1

1 B
∥

1
≤ 2ε + δ (5.33)

and

D(pAk1B ∣∣pAk−1
1 Br

(k)
Ak ∣Ak−1

1 B
) ≤ z(ε, δ) (5.34)

where z(ε, δ) = O ((ε + δ) log ∣A∣
εδ ). Note that z(ε, δ) can be made O (ε log ∣A∣

ε ) for δ = ε. Instead
of using qAn1B as the auxiliary distribution, we can use rAn1B ∶= pB∏

n
k=1 r

(k)
Ak ∣Ak−1

1 B
. We can use

the same argument as above to bound the relative entropy between pAn1B and rAn1B. This
gives us

D(pAn1B ∣∣rAn1B) =
n

∑
k=1
D(pAk1B ∣∣pAk−1

1 Br
(k)
Ak ∣Ak−1

1 B
)

≤ nz(ε, δ). (5.35)

Let µ ∶= z(ε, δ)1/3, then using the substate theorem, we have

Dµ
max(pAn1B ∣∣rAn1B) ≤ nµ +

1
µ2 + log 1

1 − µ2 .

Using the entropic triangle inequality, we get

Hµ
min(A

n
1 ∣B)p ≥Hmin(A

n
1 ∣B)r − nµ −

1
µ2 − log 1

1 − µ2

≥
n

∑
k=1
H↓min(Ak∣A

k−1
1 B)r − nµ −

1
µ2 − log 1

1 − µ2

≥
n

∑
k=1
H↓min(Ak∣A

k−1
1 B)q(k) − nµ −

1
µ2 − log 1

1 − µ2

=
n

∑
k=1
H↓,εmin(Ak∣A

k−1
1 B)p − nµ −

1
µ2 − log 1

1 − µ2

where in the third line, we use the quasi-concavity of H↓min [Tom16, Pg 73].

Thus, we have proven a chain rule for H↓,εmin of the desired form in the classical case. The
primary challenge in generalizing this approach to the quantum setting lies in defining the
auxiliary state. In the classical case, we could use the product of (suitably massaged) condi-
tional distributions q(k)

Ak ∣Ak−1
1 B

to define the auxiliary distribution rAn1B. However, the quantum
generalisation of such a distribution is not unique. Moreover, such generalisations are all
quite difficult to manipulate. A closely related problem is that we need to be able to prove a
relative entropy bound similar to that in Eq. 5.35 for the auxiliary state. This also turns out
to be quite challenging, especially because the quantum chain rules [SBT17, Theorem 4.1
and Proposition F.1] for the relative entropy do not yield something as simple and convenient
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as Eq. 5.30. We solve both of these problems indirectly. We will use a simple relative en-
tropy bound between the state ρAn1B and an unwieldy, yet simple exponential generalisation
of the auxiliary probability distribution used above. Then, in order to convert this bound
to a (measured) relative entropy bound between the state ρAn1B and a simpler and more
convenient auxiliary state, we employ the Generalised GT inequality (Lemma 5.4). Through
this approach, we are able to delegate the pesky question of the correct generalisation of the
auxiliary state to the GT inequality.

5.2.2. Proof for the quantum case

The following lemma uses the GT inequality as described above to create a generalisation
of the auxiliary state used in the classical proof and also prove a measured relative entropy
bound between the original state and this auxiliary state.

Lemma 5.4. Suppose ρAn1B is a normalised state and for 1 ≤ k ≤ n the normalised states
ρ̄
(k)
Ak1B

are full rank and satisfy

D (ρAk1B ∣∣ρ̄
(k)
Ak1B

) ≤ ε (5.36)

for some ε > 0. Let ρ̄(0)B ∶= ρB for notational simplicity. Then, the subnormalised state(3)

σAn1B ∶= ∫
∞

−∞
dtβ0(t)

n−1
∏
k=0

[(ρ̄
(k)
Ak1B

)
1−it

2
(ρ̄

(k+1)
Ak1B

)
− 1−it

2
] ⋅ ρ̄

(n)
An1B

⋅
0
∏
k=n−1

[(ρ̄
(k+1)
Ak1B

)
− 1+it

2
(ρ̄

(k)
Ak1B

)
1+it

2
]

(5.37)

= ∫
∞

−∞
dtβ0(t)ρ

1−it
2

B (ρ̄
(1)
B )

− 1−it
2

(ρ̄
(1)
A1B

)
1−it

2
(ρ̄

(2)
A1B

)
− 1−it

2
(ρ̄

(2)
A2

1B
)

1−it
2

⋯ (ρ̄
(n)
An−1

1 B
)
− 1−it

2

ρ̄
(n)
An1B

⋅ (ρ̄
(n)
An−1

1 B
)
− 1+it

2
⋯ (ρ̄

(2)
A2

1B
)

1+it
2

(ρ̄
(2)
A1B

)
− 1+it

2
(ρ̄

(1)
A1B

)
1+it

2
(ρ̄

(1)
B )

− 1+it
2
ρ

1+it
2

B . (5.38)

is such that

Dm(ρAn1B ∣∣σAn1B) ≤ nε. (5.39)

Further, the partial states of σ are

σAk1B = ∫
∞

−∞
dtβ0(t)

k−1
∏
j=0

[(ρ̄
(j)
Aj1B

)

1−it
2

(ρ̄
(j+1)
Aj1B

)
− 1−it

2
] ⋅ ρ̄

(k)
Ak1B

⋅
0
∏
j=k−1

[(ρ̄
(j+1)
Aj1B

)
− 1+it

2
(ρ̄

(j)
Aj1B

)

1+it
2

]

(5.40)

= ∫
∞

−∞
dtβ0(t)ρ

1−it
2

B (ρ̄
(1)
B )

− 1−it
2

(ρ̄
(1)
A1B

)
1−it

2
(ρ̄

(2)
A1B

)
− 1−it

2
(ρ̄

(2)
A2

1B
)

1−it
2

⋯ (ρ̄
(k)
Ak−1

1 B
)
− 1−it

2

(3)In the following and throughout this chapter, the product notation Πk
j=0Mj represents the operator

product M0M1⋯Mk and the notation Π0
j=kMj represents the operator product MkMk−1⋯M0.
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ρ̄
(k)
Ak1B

⋅ (ρ̄
(k)
Ak−1

1 B
)
− 1+it

2
⋯ (ρ̄

(2)
A2

1B
)

1+it
2

(ρ̄
(2)
A1B

)
− 1+it

2
(ρ̄

(1)
A1B

)
1+it

2
(ρ̄

(1)
B )

− 1+it
2
ρ

1+it
2

B .

(5.41)

Hence, σB = ρB, and σ is normalised.

Proof. Our approach here is broadly based on the proof of [SBT17, Theorem 4.1]. Define
the positive operator(4)

QAn1B
∶= exp(

n

∑
k=1

(log ρ̄(k)
Ak1B

− log ρ̄(k)
Ak−1

1 B
) + log ρB) . (5.42)

Note that if all the operators above commuted, QAn1B
(and also σAn1B) would be the probabil-

ity distribution ρ̄(n)
An∣An−1

1 B
ρ̄
(n−1)
An−1∣An−2

1 B
⋯ ρ̄

(1)
A1∣BρB. As is often times the case with the quantum

relative entropy, the best quantum generalisation of the above conditional distributions turns
out to be an exponential(5). For this operator, we have

D(ρAn1B ∣∣QAn1B
) = tr (ρAn1B (log ρAn1B − logQAn1B

))

= trρAn1B (log ρAn1B −
n

∑
k=1

(log ρ̄(k)
Ak1B

− log ρ̄(k)
Ak−1

1 B
) − log ρB)

=
n

∑
k=1

tr (ρAn1B (log ρAk1B − log ρ̄(k)
Ak1B

)) −
n

∑
k=1

tr (ρAn1B (log ρAk−1
1 B − log ρ̄(k)

Ak−1
1 B

))

=
n

∑
k=1

(D(ρAk1B ∣∣ρ̄
(k)
Ak1B

) −D(ρAk−1
1 B ∣∣ρ̄

(k)
Ak−1

1 B
))

≤
n

∑
k=1
D(ρAk1B ∣∣ρ̄

(k)
Ak1B

)

≤ nε (5.43)

where in the second last line, we have used the fact that the relative entropy of two normalised
states is positive and in the last line, we have used the bound in Eq. 5.36. Next, by using
the variational expression for the relative entropy (Eq. 5.18), we see that

nε ≥D(ρAn1B ∣∣QAn1B
)

= sup
ωAn1B

>0
{tr(ρAn1B logωAn1B) + 1 − tr exp(

n

∑
k=1

(log ρ̄(k)
Ak1B

− log ρ̄(k)
Ak−1

1 B
) + log ρB + logωAn1B)} .

(5.44)

(4)By restricting ourselves to strictly positive operators ρ̄(k)
Ak

1B
, we ensure that this expression is always

well-defined.
(5)Classically, we have that D(PAB ∣∣QAB) −D(PA∣∣QA) = D(PAB ∣∣PAQB∣A). Quantumly, this equation

is directly best generalised as D(ρAB ∣∣σAB)−D(ρA∣∣σA) =D(ρAB ∣∣ exp (logσAB − logσA + log ρA)). Though,
this is not very useful on its own.
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The trace exponential above can be bounded using the Generalised GT inequality (Theo-
rem 5.1) as

tr exp(
n

∑
k=1

(log ρ̄(k)
Ak1B

− log ρ̄(k)
Ak−1

1 B
) + log ρB + logωAn1B)

≤ ∫
∞

−∞
dtβ0(t) tr(ωAn1B ρ

1−it
2

B (ρ̄
(1)
B )

− 1−it
2

(ρ̄
(1)
A1B

)
1−it

2
(ρ̄

(2)
A1B

)
− 1−it

2
(ρ̄

(2)
A2

1B
)

1−it
2

⋯ (ρ̄
(n)
An−1

1 B
)
− 1−it

2
⋅

ρ̄
(n)
An1B

⋅ (ρ̄
(n)
An−1

1 B
)
− 1+it

2
⋯ (ρ̄

(2)
A2

1B
)

1+it
2

(ρ̄
(2)
A1B

)
− 1+it

2
(ρ̄

(1)
A1B

)
1+it

2
(ρ̄

(1)
B )

− 1+it
2
ρ

1+it
2

B )

= ∫
∞

−∞
dtβ0(t) tr(ωAn1B

n−1
∏
k=0

[(ρ̄
(k)
Ak1B

)
1−it

2
(ρ̄

(k+1)
Ak1B

)
− 1−it

2
] ⋅ ρ̄

(n)
An1B

⋅
0
∏
k=n−1

[(ρ̄
(k+1)
Ak1B

)
− 1+it

2
(ρ̄

(k)
Ak1B

)
1+it

2
])

= tr (ωAn1BσAn1B) (5.45)

for the state σ defined in the statement of the lemma. Plugging the bound above into
Eq. 5.44, we get

nε ≥D(ρAn1B ∣∣QAn1B
)

≥ sup
ωAn1B

>0
{tr(ρAn1B logωAn1B) + 1 − tr (ωAn1BσAn1B)}

=Dm(ρAn1B ∣∣σAn1B). (5.46)

�

We use the following theorem and its corollary to bound the relative entropy between
two states which are close to each other and have a bounded max-relative entropy.

Theorem 5.5 ( [Aud14, Theorem 4]). For two normalised quantum states ρ and σ, and
δ ∈ (0,1], we have

D(ρ∣∣(1 − δ)σ + δρ) ≤ 1
2 ∥ρ − σ∥1 log 1

δ
. (5.47)

Corollary 5.6. Suppose two normalised quantum states ρAB and σAB are such that
1
2 ∥ρAB − σAB∥1 ≤ ε (5.48)

for ε ∈ [0,1] and

δτA ⊗ ρB ≤ σAB (5.49)

where δ ∈ (0,1) and τA is the completely mixed state on register A. Then,

D(ρAB ∣∣σAB) ≤
ε

1 − δ/∣A∣2
log ∣A∣2

δ
. (5.50)
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Proof. Note that
δ

∣A∣2
ρAB ≤ δτA ⊗ ρB ≤ σAB.

So, we can write σ as

σAB = (1 − δ

∣A∣2
)σ′AB +

δ

∣A∣2
ρAB (5.51)

for some normalised quantum state σ′AB. For this state, we have

1
2 ∥ρAB − σ

′
AB∥1 =

1
2 ∥ρAB −

1
1 − δ/∣A∣2

(σAB −
δ

∣A∣2
ρAB)∥

1

=
1
2

1
1 − δ/∣A∣2

∥ρAB −
δ

∣A∣2
ρAB − (σAB −

δ

∣A∣2
ρAB)∥

1

≤
ε

1 − δ/∣A∣2
.

Using Theorem 5.5, we have that

D(ρAB ∣∣σAB) ≤
1
2 ∥ρAB − σ

′
AB∥1 log ∣A∣2

δ

≤
ε

1 − δ/∣A∣2
log ∣A∣2

δ
.

�

Now we are ready to state and prove the universal chain rule for the smooth min-entropy
for quantum states.

Theorem 5.7. For a normalised quantum state ρAn1B such that for all k ∈ [n] the dimension

∣Ak∣ = ∣A∣, and ε ∈ (0,1) such that µ = ( 2ε
1−ε/∣A∣2 log ∣A∣2

ε )
1/3

= O ((ε log ∣A∣
ε )

1/3
) lies in (0,1), we

have the chain rule

H
↓,2µ+ε/2
min (An1 ∣B)ρ ≥

n

∑
k=1
H
↓,ε/2
min (Ak∣A

k−1
1 B)ρ − nµ −

1
µ2 − log 1

1 − µ2 − log (
2
µ2 +

1
1 − µ) (5.52)

Proof. Case 1: Let’s first consider states ρAn1B, which are full rank.

For every k ∈ [n], define λk ∶=H↓,εmin(Ak∣A
k−1
1 B)ρ and let the state ρ̃(k)

Ak1B
be such that(6)

P (ρAk1B, ρ̃
(k)
Ak1B

) ≤ ε (5.53)

ρ̃
(k)
Ak1B

≤ e−λk 1Ak ⊗ρ̃
(k)
Ak−1

1 B
. (5.54)

(6)Since H↓min is discontinuous, strictly speaking, states achieving H↓,εmin(Ak ∣Ak−1
1 B)ρ may not exist. To

take this into account, we can consider λk to be arbitrarily close toH↓,εmin(Ak ∣Ak−1
1 B)ρ. However, for simplicity

we assume that such states exist throughout this paper.
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Without loss of generality, we will choose the states ρ̃(k)
Ak1B

to be normalised states, since
dividing ρ̃(k)

Ak1B
by a normalising factor N ≤ 1 only decreases its purified distance from ρ and

leaves the operator inequality above invariant. Further, let δ ∈ (0,1) be a small parameter.
For every k ∈ [n], we define the normalised states,

ρ̄
(k)
Ak1B

∶= (1 − δ)ρ̃(k)
Ak1B

+ δτAk ⊗ ρAk−1
1 B (5.55)

where τAk is the completely mixed state on register Ak. Also, define ρ̄(0)B ∶= ρB for notational
convenience. Since, ρAk−1

1 B is full rank, ρ̄(k)
Ak1B

are also full rank for all k.

For each k ∈ [n], these states satisfy
1
2 ∥ρAk1B − ρ̄

(k)
Ak1B

∥
1
≤

1 − δ
2 ∥ρAk1B − ρ̃

(k)
Ak1B

∥
1
+
δ

2 ∥ρAk1B − τAk ⊗ ρAk−1
1 B∥1

≤ ε + δ (5.56)

and

D(ρAk1B ∣∣ρ̄
(k)
Ak1B

) ≤
ε + δ

1 − δ/∣A∣2
log ∣A∣2

δ
. (5.57)

using Corollary 5.6. Let’s define the right-hand side above as

z(ε, δ) ∶=
ε + δ

1 − δ/∣A∣2
log ∣A∣2

δ
. (5.58)

Note that this can be made small, say O(ε log 1/ε), by choosing δ = ε for example.

Using Lemma 5.4, we have that the state σ defined as

σAn1B ∶= ∫
∞

−∞
dtβ0(t)

n−1
∏
k=0

[(ρ̄
(k)
Ak1B

)
1−it

2
(ρ̄

(k+1)
Ak1B

)
− 1−it

2
] ⋅ ρ̄

(n)
An1B

⋅
0
∏
k=n−1

[(ρ̄
(k+1)
Ak1B

)
− 1+it

2
(ρ̄

(k)
Ak1B

)
1+it

2
]

(5.59)

= ∫
∞

−∞
dtβ0(t)ρ

1−it
2

B (ρ̄
(1)
B )

− 1−it
2

(ρ̄
(1)
A1B

)
1−it

2
(ρ̄

(2)
A1B

)
− 1−it

2
(ρ̄

(2)
A2

1B
)

1−it
2

⋯ (ρ̄
(n)
An−1

1 B
)
− 1−it

2

ρ̄
(n)
An1B

⋅ (ρ̄
(n)
An−1

1 B
)
− 1+it

2
⋯ (ρ̄

(2)
A2

1B
)

1+it
2

(ρ̄
(2)
A1B

)
− 1+it

2
(ρ̄

(1)
A1B

)
1+it

2
(ρ̄

(1)
B )

− 1+it
2
ρ

1+it
2

B (5.60)

is normalised and satisfies

Dm(ρAn1B ∣∣σAn1B) ≤ nz(ε, δ). (5.61)

Further,

σAk1B = ∫
∞

−∞
dtβ0(t)

k−1
∏
j=0

[(ρ̄
(j)
Aj1B

)

1−it
2

(ρ̄
(j+1)
Aj1B

)
− 1−it

2
] ⋅ ρ̄

(k)
Ak1B

⋅
0
∏
j=k−1

[(ρ̄
(j+1)
Aj1B

)
− 1+it

2
(ρ̄

(j)
Aj1B

)

1+it
2

]

(5.62)

103



for k ∈ [n]. Using the substate theorem(7), we have that for µ ∶= z(ε, δ)1/3 (we omit the
dependence of µ on ε and δ for clarity)

Dµ
max(ρAn1B ∣∣σAn1B) ≤

Dm(ρAn1B ∣∣σAn1B) + 1
µ2 + log 1

1 − µ2 (5.63)

≤ nµ +
1
µ2 + log 1

1 − µ2 . (5.64)

A simple application of the entropic triangle inequality in Lemma 3.6 gives us that

Hµ
min(A

n
1 ∣B)ρ ≥Hmin(A

n
1 ∣B)σ −D

µ
max(ρAn1B ∣∣σAn1B)

≥Hmin(A
n
1 ∣B)σ − nµ −

1
µ2 − log 1

1 − µ2

≥H↓min(A
n
1 ∣B)σ − nµ −

1
µ2 − log 1

1 − µ2

≥
n

∑
k=1

H↓min(Ak∣A
k−1
1 B)σ − nµ −

1
µ2 − log 1

1 − µ2 (5.65)

where we have used the chain rule for H↓min (Eq. 5.8). We will now show that σ is such that
H↓min(Ak∣A

k−1
1 B)σ ≥H

↓,ε
min(Ak∣A

k−1
1 B)ρ.

Using the quasi-concavity of H↓min for ρ̄(k) [Tom16, Pg 73], we have

H↓min(Ak∣A
k−1
1 B)ρ̄(k) ≥ min{H↓min(Ak∣A

k−1
1 B)ρ̃(k) ,H

↓
min(Ak∣A

k−1
1 B)τAk⊗ρAk−1

1 B
}

≥ min{H↓min(Ak∣A
k−1
1 B)ρ̃(k) , log ∣A∣}

≥H↓min(Ak∣A
k−1
1 B)ρ̃(k) .

Therefore, we have that

ρ̄
(k)
Ak1B

≤ e−λk 1Ak ⊗ρ̄
(k)
Ak−1

1 B
. (5.66)

This implies that

σAk1B = ∫
∞

−∞
dtβ0(t)

k−1
∏
j=0

[(ρ̄
(j)
Aj1B

)

1−it
2

(ρ̄
(j+1)
Aj1B

)
− 1−it

2
] ⋅ ρ̄

(k)
Ak1B

⋅
0
∏
j=k−1

[(ρ̄
(j+1)
Aj1B

)
− 1+it

2
(ρ̄

(j)
Aj1B

)

1+it
2

]

≤ e−λk ∫
∞

−∞
dtβ0(t)

k−1
∏
j=0

[(ρ̄
(j)
Aj1B

)

1−it
2

(ρ̄
(j+1)
Aj1B

)
− 1−it

2
] ⋅ 1Ak ⊗ρ̄

(k)
Ak−1

1 B
⋅

0
∏
j=k−1

[(ρ̄
(j+1)
Aj1B

)
− 1+it

2
(ρ̄

(j)
Aj1B

)

1+it
2

]

≤ e−λk 1Ak ⊗∫
∞

−∞
dtβ0(t)

k−2
∏
j=0

[(ρ̄
(j)
Aj1B

)

1−it
2

(ρ̄
(j+1)
Aj1B

)
− 1−it

2
] ⋅ ρ̄

(k−1)
Ak−1

1 B
⋅

0
∏
j=k−2

[(ρ̄
(j+1)
Aj1B

)
− 1+it

2
(ρ̄

(j)
Aj1B

)

1+it
2

]

(7)It is quite remarkable that the substate theorem works with a Dm bound and the generalised GT
inequality only yields a Dm bound. All our proofs exploit this fact. Whether it is an incredible coincidence
or an indication of the tightness of these bounds: you decide.
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= e−λk 1Ak ⊗σAk−1
1 B.

Or, equivalently that H↓min(Ak∣A
k−1
1 B)σ ≥ λk = H↓,εmin(Ak∣A

k−1
1 B)ρ. Plugging this bound in

Eq. 5.65, we get

Hµ
min(A

n
1 ∣B)ρ ≥

n

∑
k=1
H↓,εmin(Ak∣A

k−1
1 B)ρ − nµ −

1
µ2 − log 1

1 − µ2 . (5.67)

Using Eq. 2.42, we can upper bound the left-hand side with H↓,2µmin (An1 ∣B) to derive

H↓,2µmin (An1 ∣B)ρ ≥
n

∑
k=1
H↓,εmin(Ak∣A

k−1
1 B)ρ − nµ −

1
µ2 − log 1

1 − µ2 − log (
2
µ2 +

1
1 − µ) . (5.68)

Case 2: The above proves the Theorem for the case when ρ was full rank. If ρ was not full
rank, then for an arbitrary ν ∈ (0,1), the state ρ′An1B ∶= (1 − ν)ρAn1B + ντAn1B, which has full
support, satisfies

H↓,2µmin (An1 ∣B)ρ′ ≥
n

∑
k=1
H↓,εmin(Ak∣A

k−1
1 B)ρ′ − nµ −

1
µ2 − log 1

1 − µ2 − log (
2
µ2 +

1
1 − µ) (5.69)

which implies that

H↓,2µ+
√

2ν
min (An1 ∣B)ρ ≥

n

∑
k=1
H↓,ε−

√
2ν

min (Ak∣A
k−1
1 B)ρ − nµ −

1
µ2 − log 1

1 − µ2 − log (
2
µ2 +

1
1 − µ)

(5.70)

for every ν ∈ (0,1). Unfortunately, since H↓min is not continuous, we cannot use continuity to
claim the above for ρ itself. We can, however, simply choose ν = ε2

8 , which gives us

H
↓,2µ+ε/2
min (An1 ∣B)ρ ≥

n

∑
k=1
H
↓,ε/2
min (Ak∣A

k−1
1 B)ρ′ − nµ −

1
µ2 − log 1

1 − µ2 − log (
2
µ2 +

1
1 − µ) (5.71)

where µ = z(ε, δ)1/3 = ( ε+δ
1−δ/∣A∣2 log ∣A∣2

δ )
1/3

. To derive the bound in the Theorem, we make the
concrete choice δ = ε. �

5.3. Unstructured approximate entropy accumulation
In this section, we develop another approximate version of the entropy accumulation

theorem (EAT) in Theorem 5.8. We show that for any state ρAn1Bn1E whose partial states
ρAk1Bk1E can be ε-approximated as the output of channels Mk, which sample the side
information Bk independent of the previous registers Ak−1

1 Bk−1
1 E we can recover a statement

similar to EAT(8). Crucially, Theorem 5.8 does not require ρAn1Bn1E be produced by a
structured process like EAT (Fig. 2.1); the state may even be produced by a completely
parallel process. In fact, our central motivation to develop this theorem was to prove the
security of parallel device-independent QKD. We do this in the next chapter. For this

(8)This seems to be equivalent to requiring that all outputs of the channelMk satisfy Ak−1
1 ↔ Bk−1

1 E ↔
Bk (see Appendix C.3).
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reason, we call this theorem the unstructured approximate EAT.

We also proved an approximate entropy accumulation theorem in Theorem 3.12. The
key difference between these two theorems lies in their applicability: Theorem 3.12 applies
only to states ρ produced by a sequential process of the same structure as the original EAT
(Fig. 3.2), while Theorem 5.8 can be applied to states generated by a completely unstructured
or parallel process. Furthermore, Theorem 3.12 considers approximation at the level of
channels. Specifically, it considers the diamond norm approximation of the channels Mk

producing the output state ρ in Fig. 3.2 by nicer channelsM′
k, which satisfy certain Markov

chain conditions. This is a strong approximation condition, since it requires the outputs of
Mk and M′

k to be approximately equal for all input states. In contrast, in Theorem 5.8,
we only need the trace distance between ρAk1Bk1E and the output of Mk to be small for a
single input state. We pay the price for these weaker conditions in terms of a much stronger
condition on the side information produced by the approximation channels. Additionally, the
smoothing parameter in Theorem 5.8 depends on the approximation parameter ε and cannot
be made arbitrarily small. In comparison, the smoothing parameter for the smooth min-
entropy in Theorem 3.12 is independent of the approximation parameter and can be chosen
arbitrarily small. Consequently, in its current form, Theorem 5.8 may have limited utility in
cryptographic scenarios where experimental noise or imperfections need to be accounted for,
as cryptographic protocols typically require the smoothing parameter to be independent of
the noise parameters. Under an analysis using Theorem 5.8, however, the noise parameters
would determine the approximation parameter and hence the smoothing parameter. We
discuss the possibility of improving this theorem to decouple these parameters in Sec. 5.3.2.
Nonetheless, Theorem 5.8 is a valuable theoretical tool in scenarios where the approximation
parameter can be made arbitrarily small, as we will demonstrate in the security analysis of
parallel DIQKD in the next chapter. We state the unstructured approximate EAT as the
following theorem.

Theorem 5.8. Let ε ∈ (0,1) and for every k ∈ [n] the registers Ak and Bk be such that
∣Ak∣ = ∣A∣ and ∣Bk∣ = ∣B∣. Suppose, the state ρAn1Bn1E is such that for every k ∈ [n], there exists
a channel Mk ∶ Rk → AkBk such that for all inputs XRk ,

trAk ○Mk (XRk) = tr(X)θ
(k)
Bk

(5.72)
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for some state θ(k)Bk
(9), and a state ρ̃(k,0)

Ak−1
1 Bk−1

1 ERk
for which

1
2 ∥ρAk1Bk1E −Mk(ρ̃

(k,0)
Ak−1

1 Bk−1
1 ERk

)∥
1
≤ ε. (5.73)

Then, as long as µ ∶= ( 4
√
ε+ε

1−ε/(∣A∣∣B∣)2 log ∣A∣2∣B∣2
ε )

1/3
= O (ε1/6 (log ∣A∣2∣B∣2

ε )
1/3

) lies in (0,1), we have
the following lower bound for the smooth min-entropy of ρ:

Hµ+ε′
min (An1 ∣B

n
1E)ρ ≥

n

∑
k=1

inf
ωRkR̃k

H(Ak∣BkR̃k)Mk(ω) − 3n√µ log(1 + 2∣A∣)

−
log(1 + 2∣A∣)

√
µ

(
2
µ2 + 2 log 1

1 − µ2 + g1(ε
′, µ)) (5.74)

where the infimum is over all the input states ωRkR̃k to the channel Mk and g1(x, y) ∶=

− log(1 −
√

1 − x2) − log(1 − y2).

The proof of this theorem follows almost the same approach as that of Theorem 5.7.
The major difference being that here we use the stronger triangle inequality (Lemma 3.5) to
bound the smooth min-entropy with the α-Rényi conditional entropy of an auxiliary state.
We then use the chain rule for these entropies along with the independence conditions on
Bk to derive the lower bound above similar to [DFR20].

Proof. Case 1: First let’s consider states ρAn1Bn1E, which have full rank. Let ν ∈ (0,1) be an
arbitrarily chosen small parameter. For every k ∈ [n], define the states

˜̃ρ(k,0)
Ak−1

1 Bk−1
1 ERk

∶= (1 − ν)ρ̃(k,0)
Ak−1

1 Bk−1
1 ERk

+ ντAk−1
1 Bk−1

1 ERk
(5.75)

˜̃ρ(k)
Ak1B

k
1E

∶= Mk ( ˜̃ρ(k,0)
Ak−1

1 Bk−1
1 ERk

) (5.76)

We make this modification to ρ̃(k) states so that ˜̃ρ(k)
Ak−1

1 Bk−1
1 E

is full rank. For each k these
states satisfy

1
2 ∥ρAk1Bk1E −

˜̃ρ(k)
Ak1B

k
1E

∥
1

=
1
2 ∥ρAk1Bk1E − (1 − ν)Mk (ρ̃

(k,0)
Ak−1

1 Bk−1
1 ERk

) − νMk (τAk−1
1 Bk−1

1 ERk
)∥

1

≤
1 − ν

2 ∥ρAk1Bk1E −Mk (ρ̃
(k)
Ak−1

1 Bk−1
1 ERk

)∥
1
+ ν

≤ ε + ν. (5.77)

Now, for each k, we define the states

ω
(k,0)
Ak−1

1 Bk−1
1 RkE

∶= ρ
1/2
Ak−1

1 Bk−1
1 E

( ˜̃ρ(k)
Ak−1

1 Bk−1
1 E

)
−1/2 ˜̃ρ(k,0)

Ak−1
1 Bk−1

1 RkE
( ˜̃ρ(k)

Ak−1
1 Bk−1

1 E
)
−1/2

ρ
1/2
Ak−1

1 Bk−1
1 E

(5.78)

(9)This condition can be relaxed to requiring channelsMk such that for all input states σAk−1
1 Bk−1

1 ERk
,

the output state Mk(σ) satisfies the Markov chain condition Ak−1
1 ↔ Bk−1

1 E ↔ Bk. This condition seems
to imply the independence condition used in the theorem (see Appendix C.3).
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ω
(k)
Ak1B

k
1E

∶= ρ
1/2
Ak−1

1 Bk−1
1 E

( ˜̃ρ(k)
Ak−1

1 Bk−1
1 E

)
−1/2 ˜̃ρ(k)

Ak1B
k
1E

( ˜̃ρ(k)
Ak−1

1 Bk−1
1 E

)
−1/2

ρ
1/2
Ak−1

1 Bk−1
1 E

(5.79)

=Mk (ω
(k,0)
Ak−1

1 Bk−1
1 RkE

) . (5.80)

Since, we defined ˜̃ρ(k)
Ak−1

1 Bk−1
1 E

to be full rank, we have that

ω
(k)
Ak−1

1 Bk−1
1 E

= ρAk−1
1 Bk−1

1 E. (5.81)

Using Lemma 5.3, we have that
1
2 ∥ρAk1Bk1E − ω

(k)
Ak1B

k
1E

∥
1
≤ (

√
2 + 1)P (ρAk1Bk1E,

˜̃ρAk1Bk1E)

≤ (
√

2 + 1)
√

2(ε + ν)

≤ 4
√
ε + ν. (5.82)

Let δ ∈ (0,1) be a small parameter (to be set equal to ε later). Finally, for every k ∈ [n], we
define the states

ρ̄
(k)
Ak1B

k
1E

∶=(1 − δ)ω(k)
Ak1B

k
1E

+ δτAkBk ⊗ ρAk−1
1 Bk−1

1 E (5.83)

=(1 − δ)ω(k)
Ak1B

k
1E

+ δτAkBk ⊗ ω
(k)
Ak−1

1 Bk−1
1 E

(5.84)

where τAkBk is the completely mixed state on the registers Ak and Bk. Also, define ρ̄(0)E ∶= ρE.
Let ∆k ∶ Rk → AkBk be the map which traces out the register Rk and simply outputs τAkBk
and letMδ

k ∶= (1 − δ)Mk +δ∆k. Then, we have that

ρ̄
(k)
Ak1B

k
1E

= (1 − δ)ω(k)
Ak1B

k
1E

+ δτAkBk ⊗ ω
(k)
Ak−1

1 Bk−1
1 E

= ((1 − δ)Mk +δ∆k) (ω
(k,0)
Ak−1

1 Bk−1
1 RkE

)

=Mδ
k (ω

(k,0)
Ak−1

1 Bk−1
1 RkE

) . (5.85)

We also have that
1
2 ∥ρ̄

(k)
Ak1B

k
1E

− ρAk1Bk1E∥1
≤ 4

√
ε + ν + δ. (5.86)

Using Corollary 5.6, this gives us

D(ρAk1Bk1E ∣∣ρ̄
(k)
Ak1B

k
1E

) ≤
4
√
ε + ν + δ

1 − δ/(∣A∣∣B∣)2 log ∣A∣2∣B∣2

δ
. (5.87)

We define the above bound as z(ε + ν, δ). Once again, using Lemma 5.4 (for Ak ← AkBk,
B ← E and ρ̄(k)

Ak1B
← ρ̄

(k)
Ak1B

k
1E

) we have that auxiliary state

σAn1Bn1E

∶= ∫
∞

−∞
dtβ0(t)

n−1
∏
k=0

[(ρ̄
(k)
Ak1B

k
1E

)
1−it

2
(ρ̄

(k+1)
Ak1B

k
1E

)
− 1−it

2
] ⋅ ρ̄

(n)
An1B

n
1E

⋅
0
∏
k=n−1

[(ρ̄
(k+1)
Ak1B

k
1E

)
− 1+it

2
(ρ̄

(k)
Ak1B

k
1E

)
1+it

2
]

(5.88)
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= ∫
∞

−∞
dtβ0(t)ρ

1−it
2

E (ρ̄
(1)
E )

− 1−it
2

(ρ̄
(1)
A1B1E

)
1−it

2
(ρ̄

(2)
A1B1E

)
− 1−it

2
(ρ̄

(2)
A2

1B
2
1E

)
1−it

2
⋯ (ρ̄

(n)
An−1

1 Bn−1
1 E

)
− 1−it

2
⋅

ρ̄
(n)
An1B

n
1E

⋅ (ρ̄
(n)
An−1

1 Bn−1
1 E

)
− 1+it

2
⋯ (ρ̄

(2)
A2

1B
2
1E

)
1+it

2
(ρ̄

(2)
A1B1E

)
− 1+it

2
(ρ̄

(1)
A1B1E

)
1+it

2
(ρ̄

(1)
E )

− 1+it
2
ρ

1+it
2

E

(5.89)

is a normalised state satisfying

Dm(ρAn1Bn1E ∣∣σAn1Bn1E) ≤ nz(ε + ν, δ) (5.90)

and

σAk1Bk1E

= ∫
∞

−∞
dtβ0(t)

k−1
∏
j=0

[(ρ̄
(j)
Aj1B

j
1E

)

1−it
2

(ρ̄
(j+1)
Aj1B

j
1E

)
− 1−it

2
] ⋅ ρ̄

(k)
Ak1B

k
1E

⋅
0
∏
j=k−1

[(ρ̄
(j+1)
Aj1B

j
1E

)
− 1+it

2
(ρ̄

(j)
Aj1B

j
1E

)

1+it
2

]

(5.91)

=Mδ
k (∫

∞

−∞
dtβ0(t)

k−1
∏
j=0

[(ρ̄
(j)
Aj1B

j
1E

)

1−it
2

(ρ̄
(j+1)
Aj1B

j
1E

)
− 1−it

2
] ⋅ ω

(k,0)
Ak−1

1 Bk−1
1 RkE

⋅

0
∏
j=k−1

[(ρ̄
(j+1)
Aj1B

j
1E

)
− 1+it

2
(ρ̄

(j)
Aj1B

j
1E

)

1+it
2

]). (5.92)

Let σ(k,0)
Ak−1

1 Bk−1
1 RkE

be the input state forMδ
k above, so that

σAk1Bk1E =Mδ
k (σ

(k,0)
Ak−1

1 Bk−1
1 RkE

) (5.93)

Let’s define µ ∶= z(ε + ν, δ)1/3. Using the substate theorem (Theorem 2.26), we get the
following bound from the above relative entropy bound

Dµ
max(ρAn1Bn1E ∣∣σAn1Bn1E) ≤ nµ +

1
µ2 + log 1

1 − µ2 . (5.94)

Let ε′ ∈ (0,1) be an arbitrary small parameter such that ε′ + µ < 1 and let α ∈ (1,2]. We can
now use the entropic triangle inequality in Lemma 3.5 to derive

Hµ+ε′
min (An1 ∣B

n
1E)ρ ≥ H̃

↑
α(A

n
1 ∣B

n
1E)σ −

α

α − 1nµ −
1

α − 1 (
α

µ2 + α log 1
1 − µ2 + g1(ε

′, µ)) (5.95)

Moreover, using Eq. 5.92, we can show that Bk is independent of Ak−1
1 Bk−1

1 E in σ. For
σAk−1

1 Bk1E
= trAk ○M

δ
k(σ

(k,0)
Ak−1

1 Bk−1
1 RkE

), we have

σAk−1
1 Bk1E

= (1 − δ) trAk ○Mk(σ
(k,0)
Ak−1

1 Bk−1
1 RkE

) + δτBk ⊗ σ
(k,0)
Ak−1

1 Bk−1
1 E

(5.96)

= ((1 − δ)θ(k)Bk
+ δτBk) ⊗ σAk−1

1 Bk−1
1 E. (5.97)
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In particular, we have that σ satisfies the Markov chain Ak−1
1 ↔ Bk−1

1 E ↔ Bk. So, we can
use [DFR20, Corollary 3.5] to show that for every k ∈ [n]

H̃↓α(A
k
1 ∣B

k
1E)σ ≥ H̃

↓
α(A

k−1
1 ∣Bk−1

1 E)σ + inf
ωRkR̃k

H̃↓α(Ak∣BkR̃k)Mδ
k(ω)

≥ H̃↓α(A
k−1
1 ∣Bk−1

1 E)σ + inf
ωRkR̃k

H̃↓α(Ak∣BkR̃k)Mk(ω) (5.98)

where we use the quasi-concavity of H̃↓α [Tom16, Pg 73] in the second line. Consecutively
using this bound in Eq. 5.95 gives us

Hµ+ε′
min (An1 ∣B

n
1E)ρ ≥

n

∑
k=1

inf
ωRkR̃k

H̃↓α(Ak∣BkR̃k)Mk(ω) −
α

α − 1nµ −
1

α − 1 (
α

µ2 + α log 1
1 − µ2 + g1(ε

′, µ))

≥
n

∑
k=1

inf
ωRkR̃k

H(Ak∣BkR̃k)Mk(ω) − n(α − 1) log2(1 + 2∣A∣) −
α

α − 1nµ

−
1

α − 1 (
α

µ2 + α log 1
1 − µ2 + g1(ε

′, µ))

where in the second line we have used [DFR20, Lemma B.9] which is valid as long as
α < 1 + 1/ log(1 + 2∣A∣). Lastly, we choose α = 1 +

√
µ

log(1+2∣A∣) and use α < 2 as an upper bound
to derive

Hµ+ε′
min (An1 ∣B

n
1E)ρ ≥

n

∑
k=1

inf
ωRkR̃k

H(Ak∣BkR̃k)Mk(ω) − 3n√µ log(1 + 2∣A∣)

−
log(1 + 2∣A∣)

√
µ

(
2
µ2 + 2 log 1

1 − µ2 + g1(ε
′, µ)) (5.99)

where µ = z(ε + ν, δ)1/3. The above bound holds true for all ν > 0. Therefore, it also holds
for ν → 0. To derive the bound in the theorem statement, we fix δ = ε.

Case 2: If ρAn1Bn1E were not full rank then we can always select a full rank state ρ′An1Bn1E
ε-close to ρ, which would satisfy Eq. 5.73 and hence the above inequality with ε → ε + ε.
Now we can take ε→ 0 and use the continuity of Hmin to arrive at the above bound for such
ρ. �

5.3.1. Testing for unstructured approximate EAT

We incorporate testing into the approximate EAT proven above. We begin by defining
the testing channels Tk. These channels measure the outputs Ak and Bk of the state ρ and
output a result Xk based on these measurements. Concretely, for every k ∈ [n] the channel
Tk ∶ AkBk → AkBkXk is of the form

Tk(ωAkBk) = ∑
a,b

Π(a)
Ak

⊗Π(b)
Bk
ωAkBkΠ

(a)
Ak

⊗Π(b)
Bk
⊗ ∣x(a,b)⟩ ⟨x(a,b)∣Xk (5.100)
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where {Π(a)
Ak

}a and {Π(b)
Bk

}b are orthogonal projectors and x(⋅) is some deterministic function
which uses the measurements a and b to create the output register Xk.

Next we define the min-tradeoff functions. We consider n channels N k for k ∈ [n] and
assume that the registers Xk, which consist of the result of the testing channels Tk are
isomorphic, that is, Xk ≡ X for all k. Let P be the set of probability distributions over the
alphabet of X registers. Let R be any register isomorphic to Rk. For a probability q ∈ P and
a channel N k ∶ Rk → AkBk, we define the set

Σ(q∣N k) ∶= {νAkBkXkR = Tk ○ N k(ωRkR) ∶ for a state ωRk−1R such that νXk = q} . (5.101)

Definition 5.9. A function f ∶ P → R is called a min-tradeoff function for the channels
{N k}nk=1 if for every k and q ∈ P, it satisfies

f(q) ≤ inf
ν∈Σ(q∣N k)

H(Ak∣BkR)ν . (5.102)

We now state the unstructured approximate EAT with testing.

Theorem 5.10. Let ε ∈ (0,1) and for every k ∈ [n], the registers Ak and Bk be such that
∣Ak∣ = ∣A∣ and ∣Bk∣ = ∣B∣. Suppose, the state ρAn1Bn1Xn

1 E
is such that

(1) The registers Xn
1 can be recreated by applying the testing maps to the registers An1

and Bn
1 , that is,

ρAn1Bn1Xn
1 E

= Tn ○ ⋯ ○ T1(ρAn1Bn1E) (5.103)

(2) For every k ∈ [n], there exists a channel Mk ∶ Rk → AkBk and a state θ(k)Bk
such that

trXk ○Tk ○Mk =Mk (5.104)

trAk ○Mk(XRk) = tr(X)θ
(k)
Bk

for all operators XRk (5.105)

and a state ρ̃(k,0)
Ak−1

1 Bk−1
1 ERk

for which

1
2 ∥ρAk1Bk1E −Mk(ρ̃

(k,0)
Ak−1

1 Bk−1
1 ERk

)∥
1
≤ ε. (5.106)

Then, for an event Ω defined using Xn
1 , an affine min-tradeoff function f for {Mk}nk=1 such

that for every xn1 ∈ Ω, f(freq(xn1)) ≥ h, we have

Hµ′+ε′
min (An1 ∣B

n
1E)ρ∣Ω ≥ n(h − V (3√µ + 4ε) − g2(2ε))

−
V
√
µ

(2 log 1
Prρ(Ω) − µ

+
2
µ2 + 2 log 1

1 − µ2 + g1(ε
′, µ′)) (5.107)
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where

µ ∶= (
8
√
ε + 2ε

1 − ε2/(∣A∣∣B∣)2 log ∣A∣∣B∣

ε
)

1/3

(5.108)

µ′ ∶= 2
√

µ

Prρ(Ω)
(5.109)

V ∶= log (1 + 2∣A∣) + 2⌈∥∇f∥∞⌉ (5.110)

g1(x, y) ∶= − log(1 −
√

1 − x2) − log(1 − y2) (5.111)

g2(x) ∶= x log 1
x
+ (1 + x) log(1 + x) (5.112)

and ε′ ∈ (0,1) such that µ′ + ε′ < 1.

The proof for this is similar to that of Theorem 5.8. We provide it in Appendix C.4

5.3.2. Dependence of smoothing parameter on the approximation
parameter

It is evident that the smoothing parameter must depend on the approximation parameter,
ε, for the unstructured approximate EAT in its current form. To illustrate this, consider
a distribution pAn1B where B = 1 with probability (1 − ε) and B = 0 otherwise. In this
distribution, An1 is sampled uniformly at random from {0,1}n if B = 1, and otherwise set to
a constant string. For every k, this distribution satisfies

pAk1B ≈O(ε) ∆(pAk−1
1 B) (5.113)

where ∆ is a channel that disregards its input and uniformly samples a bit Ak. Thus, this
distribution meets the requirements for the unstructured approximate EAT. However, for
this distribution, Hε

min(A
n
1 ∣B)p = n, but for any ε′ ≤ ε/2, we have Hε′

min(A
n
1 ∣B)p = O(log 1/ε).

This example demonstrates the necessity of the smoothing parameter’s dependence on ε.

Nevertheless, it appears possible to decouple this dependence in certain interesting cases,
such as sequential DIQKD with leakage and parallel DIQKD. It seems that the smoothing
parameter’s dependence on ε is required to remove the case of “correlated failure”. In the
aforementioned example, it is necessary to exclude the case where B = 0 and An1 are perfectly
determined (highly correlated). Consider, however, the state ρXn

1 Y
n
1 A

n
1B

n
1E

produced in a
DIQKD protocol with imperfections or leakages (Xn

1 and Y n
1 represent Alice and Bob’s

questions, An1 and Bn
1 their answers, and E the adversary’s register), where for each k

ρXk
1 Y

k
1 A

k
1B

k
1E

≈εMk (ρ
(k,0)
Xk−1

1 Y k−1
1 Ak−1

1 Bk−1
1 RkE

) (5.114)
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for a channelMk, which plays the CHSH game between Alice and Bob, as one would expect in
DIQKD with no leakage. We can use the unstructured EAT to prove that the entropy of the
answers with respect to the questions and E is large for such a state. Drawing an analogy with
the example distribution p above, we can deduce that the smoothing parameter must depend
on ε to remove the case of correlated failure, whereby all the games fail together. However,
this can also be achieved through testing, similar to the approach adopted in [MD24a].
By measuring the winning probability of the CHSH game on a random sample of games,
we can determine if it is sufficiently high. If so, we can conclude that the CHSH game
must have been played using “good” entangled quantum states between the two parties, and
an event of correlated failure must not have occurred. While some additional assumptions
may be required regarding the side information, this approach could potentially allow for
an arbitrary smoothing parameter in such cases. This is an interesting line of research to
pursue in the future.

5.4. Alternative proof for the universal chain rule
The proofs so far in this chapter have followed the approach of creating an auxiliary

state using certain conditional states, proving that this state has a small relative entropy
from the original state and reducing the original problem to a simpler one in terms of this
auxiliary state. This is also the general approach we followed in Chapter 3. In Sec. 3.3
we provide a simple and intuitive alternate proof technique that lower bounds the smooth
min-entropy for the classical approximately independent registers problem in an elementwise
fashion. We are now ready to generalise this proof. Here we use it to provide an alternative
proof of the universal chain rule for the smooth min-entropy.

5.4.1. Classical proof

We begin by once again first sketching the proof in the classical case. Recall that we
would like to prove that for a probability distribution pAn1B,

H
g1(ε)
min (An1 ∣B)p ≥

n

∑
k=1
H↓,εmin(Ak∣A

k−1
1 B)p − ng2(ε) − k(ε). (5.115)

Let λk ∶= H↓,εmin(Ak∣A
k−1
1 B)p. Following Sec. 5.2.1, for k ∈ [n], let q(k)

Ak1B
be the distribution,

such that
1
2 ∥pAk1B − q

(k)
Ak1B

∥
1
≤ ε (5.116)

H↓,εmin(Ak∣A
k−1
1 B)p = λk =H

↓
min(Ak∣A

k−1
1 B)q(k) . (5.117)
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Similar to Eq. 5.27, we also have that
1
2 ∥pAk1B − pAk−1

1 Bq
(k)
Ak ∣Ak−1

1 B
∥

1
≤ 2ε. (5.118)

Using Lemma 3.8, for every k ∈ [n], we know that the set

Bk ∶ = {(an1 , b) ∶ p(a
k
1b) > (1 +

√
2ε)p(ak−1

1 b)q(k)(ak∣a
k−1
1 b)}

= {(an1 , b) ∶ p(ak∣a
k−1
1 b) > (1 +

√
2ε)q(k)(ak∣ak−1

1 b)}

satisfies Prp(Bk) ≤ 3
√
ε. We can now define L = ∑

n
k=1 χBk , which is a random variable that

simply counts the number of bad sets Bk an element (an1 , b) belongs to. Using the Markov
inequality, we have

Pr
p

[L > nε
1
4 ] ≤

Ep[L]
nε

1
4

≤ 3ε 1
4 .

We can define the bad set B ∶= {(an1 , b) ∶ L(a
n
1 , b) > nε

1
4}. Then for the subnormalised distri-

bution p̃An1B defined as

p̃An1B(a
n
1 , b) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

pAn1B(a
n
1 , b) (an1 , b) /∈ B

0 else
,

we have P (p̃An1B, pAn1B) ≤
√

6ε1/8. Further, note that for every (an1 , b) /∈ B, we have

p(an1 ∣b) =
n

∏
k=1

p(ak∣a
k−1
1 , b)

= ∏
k∶(an1 ,b)/∈Bk

p(ak∣a
k−1
1 , b) ∏

k∶(an1 ,b)∈Bk
p(ak∣a

k−1
1 , b)

≤ (1 +
√

2ε)n ∏
k∶(an1 ,b)/∈Bk

q(k)(ak∣a
k−1
1 , b) ∏

k∶(an1 ,b)∈Bk
elog ∣A∣−λk

≤ (1 +
√

2ε)n ∏
k∶(an1 ,b)/∈Bk

e−λk ∏
k∶(an1 ,b)∈Bk

elog ∣A∣−λk

≤ (1 +
√

2ε)n enε1/4 log ∣A∣
n

∏
k=1

e−λk

where in the third line we have used the fact that if (an1 , b) /∈ Bk, then p(ak∣ak−1
1 b) ≤ (1 +

√
ε)q(k)(ak∣ak−1

1 b) and if (an1 , b) ∈ Bk then p(ak∣ak−1
1 b) ≤ 1 ≤ exp(log ∣A∣ −λk) since λk ≤ log ∣A∣.

In the last line we have used the fact that for (ak1, b) /∈ B, we have ∣{k ∈ [n] ∶ (an1 ,b) ∈ Bk}∣ =

L(an1 , b) ≤ nε
1
4 . This proves the following lower bound for the smooth min-entropy of ρ

H↓,
√

6ε1/8
min (An1 ∣B) ≥

n

∑
k=1
H↓,εmin(Ak∣A

k−1
1 B) − nε1/4 log ∣A∣ − n log(1 +

√
ε). (5.119)

There are many hurdles to generalising this proof to the quantum setting. Firstly, the
correct generalisation of Lemma 3.8 is quite difficult. Secondly, the proof above bounds the
conditional probability p(an1 ∣b) for every element (an1 , b) /∈ B differently depending on which
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bad sets (Bk)k it belongs in. It is not obvious how such an argument can be carried out
for quantum states. For example, one cannot simply use the eigenvalues of ρAn1B instead
of p(an1b) since the eigenvectors for each of the partial states ρAk1B differ. Lastly, in the
quantum case it does not seem that the Markov inequality can be used to identify the bad
sets and the smoothed state as we did above.

The correct generalisation of Lemma 3.8 was proven by [fu23]. We state it in
Lemma 5.13. To address the second and third hurdles mentioned above, we modify the
classical proof before proceeding to the quantum proof.

Instead of figuring out the bad set B and eliminating the elements belonging to this set to
construct the smoothed distribution, we use the substate theorem and the entropic triangle
inequality. Define the auxiliary subnormalised distribution

q(an1b) ∶= δ
L(an1 b)p(an1b) (5.120)

for some small δ ∈ (0, 1
∣A∣). The δL(a

n
1 b) factor in q simply guarantees that elements which have

a large L (are bad) are significantly damped. This ensures that for all an1 , b, we have that

q(an1b) = δ
L(an1 b)p(an1b)

= p(b)
n

∏
k=1

δχBk(a
n
1 b)p(ak∣a

k−1
1 b)

≤ p(b)
n

∏
k=1

(1 +
√

2ε)e−λk . (5.121)

The last inequality above is guaranteed both when an1 , b /∈ Bk and when an1 , b ∈ Bk since we
chose δ < 1

∣A∣ . This gives us a lower bound the min-entropy of q. Moreover, we can easily
show that the relative entropy between p and q is small:

D(pAn1B ∣∣qAn1B) = Ep [log p(A
n
1B)

q(An1B)
]

= Ep [L log 1
δ
]

= 3n
√
ε log 1

δ
. (5.122)

Now, we can bound the smooth min-entropy of p in terms of the min-entropy of q by using
the substate theorem and the entropic triangle inequality. We will generalise this proof to
the quantum case.
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5.4.2. Lemmas

In this section, we will primarily use the following variant of the smooth min-entropy,
which has previously appeared in [ABJT20]:

H̄ε
min(A∣B)ρ ∶= sup{λ ∈ R ∶ for ρ̃AB ∈ Bε(ρAB) such that ρ̃AB ≤ e−λ 1A⊗ρB} . (5.123)

Note that H̄ε
min(A∣B)ρ ≥ − log ∣A∣ because ρAB ≤ ∣A∣1A⊗ρB. Also, H̄ε

min(A∣B)ρ ≤ log ∣A∣
1−ε2 . To

see this note that for any ρ̃AB and λ, such that

ρ̃AB ≤ e−λ 1A⊗ρB

⇒ tr ρ̃AB ≤ e−λ∣A∣

⇒λ ≤ log ∣A∣

tr ρ̃AB
(5.124)

where we have simply taken a trace in the second line. Finally, use the fact that tr ρ̃AB ≥ 1−ε2

for all ρ̃AB ∈ Bε(ρAB).

This smooth min-entropy can be lower bounded using the H↓,εmin min-entropy as the fol-
lowing lemma shows.

Lemma 5.11. For a normalized quantum state ρAB and ε ≥ 0, we have

H̄2ε
min(A∣B)ρ ≥H

↓,ε
min(A∣B)ρ. (5.125)

Proof. Let λ =H↓,εmin(A∣B)ρ and the state ρ̃AB ∈ Bε(ρAB) be such that

ρ̃AB ≤ e−λ 1A⊗ρ̃B. (5.126)

By Lemma C.1, we have that ηAB ∶= ρ
1/2
B UBρ̃

−1/2
B ρ̃ABρ̃

−1/2
B U †

Bρ
1/2
B satisfies P (ρAB, ηAB) ≤ 2ε.

Clearly, this state also satisfies

ηAB ≤ e−λ 1A⊗ρB. (5.127)

�

We also require the following operator inequality relating an operator and its compres-
sions.

Lemma 5.12. For a positive operator X ≥ 0 and orthogonal projectors Π and Π⊥ = 1−Π,
we have

Π⊥XΠ⊥ ≤ 2X + 2ΠXΠ. (5.128)

116



Proof. We will write the operator X as the block matrix

X =
⎛

⎝

X1 X2

X∗
2 X3

⎞

⎠
(5.129)

where the blocks are partitioned according to the direct sum im(Π)⊕im(Π⊥). The statement
in the Lemma is now equivalent to proving that

0 ≤
⎛

⎝

4X1 2X2

2X∗
2 X3

⎞

⎠
. (5.130)

Call the matrix above X ′. Note that using the Schur’s complement [Bha07, Exercise 1.3.5]
X ≥ 0 implies that X3 ≥ 0, im(X∗

2 ) ⊆ im(X3) and

X1 ≥X2X
−1
3 X∗

2 . (5.131)

Using Schur’s complement characterization again for X ′, we see that X ′ ≥ 0 is equivalent to
X3 ≥ 0, im(X∗

2 ) ⊆ im(X3) and

4X1 ≥ (2X2)X
−1
3 (2X2)

∗

which are all true because of the corresponding relations for X itself. �

The following lemma correctly generalises Lemma 3.8. It was proven by user:fedja in response
to a question by user:noel (pseudonym used by AM) on MathOverflow [fu23]. We reproduce
the proof in Appendix C.5 for completeness.

Lemma 5.13 ( [fu23]). For ε ∈ [0,1], and subnormalized quantum states ρ and σ on the finite
dimensional Hilbert space X such that 1

2 ∥ρ − σ∥1 ≤ ε, there exists an orthogonal projector Π
such that

ΠρΠ ≤ (1 + g1(ε))σ (5.132)

and

tr((1−Π)ρ) ≤ g2(ε) (5.133)

for the small functions

g1(ε) ∶=
8
3(1 + ε1/3)ε1/3 log 1

ε
+ (1 + ε1/3 + ε2/3)ε1/3 = O (ε1/3 log 1

ε
) (5.134)

g2(ε) ∶= 4(1 + ε1/3)ε1/3 + 2ε = O(ε1/3) (5.135)

117



5.4.3. Quantum proof

In this section, we will generalise the classical proof presented earlier to the quantum
case. We will prove a statement of the following form for all normalised quantum states
ρAn1B:

H
g′1(ε)
min (An1 ∣B)ρ ≥

n

∑
k=1
H̄ε

min(Ak∣A
k−1
1 B)ρ − ng

′
2(ε) − k(ε) (5.136)

where g′1 and g′2 are small functions of ε and k is a general function of ε. This will be
sufficient to prove the universal chain rule.

For every k, let λk ∶= H̄ε
min(Ak∣A

k−1
1 B)ρ and ρ̃(k)

Ak1B
be the subnormalised state such that

P (ρAk1B, ρ̃
(k)
Ak1B

) ≤ ε (5.137)

ρ̃
(k)
Ak1B

≤ e−λk 1Ak ⊗ρAk−1
1 B. (5.138)

Using the Fuchs-van de Graaf inequality, for each k, we also have
1
2 ∥ρAk1B − ρ̃

(k)
Ak1B

∥
1
≤ ε. (5.139)

We will now define the projectors P (k,l)
Ak1B

for every k ∈ [n] and the label l ∈ {g,b} ({good, bad}).
We define the good projector P (k,g)

Ak1B
to be the projector given by Lemma 5.13 when applied

to the states ρAk1B and ρ̃(k)
Ak1B

, so that it satisfies

P
(k,g)
Ak1B

ρAk1BP
(k,g)
Ak1B

≤ (1 + g1(ε))ρ̃
(k)
Ak1B

(5.140)

and

tr(P (k,g)
Ak1B

ρAk1B) ≥ 1 − g2(ε) (5.141)

for g1 and g2 as defined in Lemma 5.13. Further, define its orthogonal complement as the
bad projector,

P
(k,b)
Ak1B

∶= 1Ak1B −P
(k,g)
Ak1B

. (5.142)

The label l in P (k,l)
Ak1B

will allow us to succinctly refer to these two projectors together. Define
the subnormalised state

ηAn1B ∶= P
(1,g)
A1B

P
(2,g)
A2

1B
⋯P

(n,g)
An1B

ρAn1B P
(n,g)
An1B

⋯P
(2,g)
A2

1B
P

(1,g)
A1B

. (5.143)

For this state, observe that

P
(1,g)
A1B

P
(2,g)
A2

1B
⋯P

(n,g)
An1B

ρAn1B P
(n,g)
An1B

⋯P
(2,g)
A2

1B
P

(1,g)
A1B

≤ (1 + g1(ε))P
(1,g)
A1B

P
(2,g)
A2

1B
⋯P

(n−1,g)
An−1

1 B
ρ̃
(n)
An1B

P
(n−1,g)
An−1

1 B
⋯P

(2,g)
A2

1B
P

(1,g)
A1B
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≤ e−λn(1 + g1(ε))P
(1,g)
A1B

P
(2,g)
A2

1B
⋯P

(n−1,g)
An−1

1 B
1An ⊗ρAn−1

1 B P
(n−1,g)
An−1

1 B
⋯P

(2,g)
A2

1B
P

(1,g)
A1B

= e−λn(1 + g1(ε))1An ⊗P
(1,g)
A1B

P
(2,g)
A2

1B
⋯P

(n−1,g)
An−1

1 B
ρAn−1

1 B P
(n−1,g)
An−1

1 B
⋯P

(2,g)
A2

1B
P

(1,g)
A1B

≤ ⋯

≤ e−∑
n
k=1 λk(1 + g1(ε))

n 1An1 ⊗ρB

which implies that Hmin(An1 ∣B)η ≥ ∑
n
k=1 H̄

ε
min(Ak∣A

k−1
1 B)ρ − n log(1 + g1(ε)). Moreover, the

distance between η and ρ is

P (ρAn1B, ηAn1B) = P (ρAn1B, P
(1,g)
A1B

P
(2,g)
A2

1B
⋯P

(n,g)
An1B

ρAn1B P
(n)
An1B

⋯P
(2,g)
A2

1B
P

(1,g)
A1B

)

≤ P (ρAn1B, P
(1,g)
A1B

ρAn1B P
(1,g)
A1B

)

+ P (P
(1,g)
A1B

ρAn1B P
(1,g)
A1B

, P
(1,g)
A1B

P
(2,g)
A2

1B
⋯P

(n,g)
An1B

ρAn1B P
(n,g)
An1B

⋯P
(2,g)
A2

1B
P

(1,g)
A1B

)

≤ P (ρAn1B, P
(1,g)
A1B

ρAn1B P
(1,g)
A1B

) + P (ρAn1B, P
(2,g)
A2

1B
⋯P

(n,g)
An1B

ρAn1B P
(n,g)
An1B

⋯P
(2,g)
A2

1B
)

≤ ⋯

≤
n

∑
k=1
P (ρAn1B, P

(k,g)
Ak1B

ρAn1B P
(k,g)
Ak1B

)

≤ n
√

2g2(ε)

where we have used the gentle measurement lemma [Wat18, Proposition 3.14] for the last
line. The distance between η and ρ grows like n times a small function and the min-entropy
of η satisfies Hmin(An1 ∣B)η ≥ ∑

n
k=1 H̄

ε
min(Ak∣A

k−1
1 B)ρ − n log(1 + g1(ε)). If we were able to

show that the relative entropy distance between these two states also grew like n times a
small function, similar to the purified distance then we could use the substate theorem and
the entropic triangle inequality to prove a bound of the required form. However, we can’t
directly prove that the relative entropy between these two states is small because in general
the projectors sandwiching the state ρ in η could lead to a situation, where ρ /≪ η, which
would cause their relative entropy diverge. To remedy this, one could imagine adding a
small amount of the complement projector to these projectors, so that we sandwich with
P

(k,g)
Ak1B

+ δP
(k,b)
Ak1B

instead of simply P (k)
Ak1B

. Under no further assumptions on ρ, the question of
whether the divergence of ρ and η is finite or not in this case reduces to the question: given
a state σ, a projector Π and its complement Π⊥ ∶= 1−Π, is

σ ≪ (Π + δΠ⊥)σ(Π + δΠ⊥)? (5.144)

The answer to this is easily seen to be negative when one consider the pure state σ = ∣u⟩ ⟨u∣.
In this case, the above is equivalent to asking if ∣u⟩ ⟨u∣ ≪ ∣v⟩ ⟨v∣ for some vector ∣v⟩ ≠ ∣u⟩,
which is not true.
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The next simple remedy that comes to mind is to use a “pinching type” disturbance to
ensure that the divergence is finite. For δ ∈ (0,1), a projector Π and its complement Π⊥,
define the CP map Pδ[Π] as

Pδ[Π](σ) ∶= ΠσΠ + δΠ⊥σΠ⊥. (5.145)

Then, by the pinching inequality, for every Π, we have

σ ≤
2
δ
(δΠσΠ + δΠ⊥σΠ⊥)

≤
2
δ
Pδ[Π](σ)

which implies Dmax(σ∣∣Pδ[Π](σ)) ≤ O(log 1/δ)– a bound that should be sufficient for our
purposes. Therefore, one can try proving the chain rule using the subnormalised state

Pδ[P
(1,g)
A1B

] ○ Pδ[P
(2,g)
A2

1B
] ○ ⋯ ○ Pδ[P

(n,g)
An1B

](ρAn1B)

= ∑
ln1 ∈{g,b}n

δωb(l
n
1 )P

(1,l1)
A1B

P
(2,l2)
A2

1B
⋯P

(n,ln)
An1B

ρAn1B P
(n,ln)
An1B

⋯P
(2,l2)
A2

1B
P

(1,l1)
A1B

(5.146)

where ωb(ln1 ) ∶= ∣{i ∶ li = b}∣ is the weight of b labels in the string ln1 . In our proof below,
we do not attempt to directly identify the correct modified state ourselves. Similar to the
proofs before, we instead leave this question for the generalised GT inequality. We will use
an exponential generalisation of the distribution q in Eq. 5.120. Variants of both of the above
remedies make an appearance during the following proof.

Lemma 5.14. For a full rank state ρAn1B and ε ∈ (0,1), we have the chain rule

Hµ
min(A

n
1 ∣B)ρ ≥

n

∑
k=1
H̄ε

min(Ak∣A
k−1
1 B)ρ − n log (1 + 4∣A∣2

ε

1 − ε2) − n log(1 + g1(ε))

− n log(1 + ε) − n(µ + µ3) −
1
µ2 − log 1

1 − µ2 (5.147)

where

µ ∶= (8(1 + ε1/3) log 1
ε
)

1/3
ε1/9 = O (ε1/9 (log 1

ε
)

1/3
) (5.148)

g1(ε) ∶=
8
3(1 + ε1/3)ε1/3 log 1

ε
+ (1 + ε1/3 + ε2/3)ε1/3 = O (ε1/3 log 1

ε
) (5.149)

as long as µ ∈ (0,1).

Proof. We retain the definitions of ρ̃Ak1B, λk, and P
(k,l)
Ak1B

from the discussion above. Following
the classical proof in Sec. 5.4.1, define LAn1B ∶= ∑

n
k=1P

(k,b)
Ak1B

as the sum of the “bad” projectors.
Then, we have that

tr(LAn1B ρAn1B) =
n

∑
k=1

tr(P (k,b)
Ak1B

ρAk1B)
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≤ ng2(ε). (5.150)

Let δ ∈ (0,1) be a parameter to be chosen later. We have that

ng2(ε) log 1
δ

≥D (ρAn1B ∣∣ exp (log ρAn1B + log(δ)LAn1B))

= sup
ωAn1B

>0
{tr(ρAn1B logωAn1B) + 1 − tr exp(logωAn1B + log(δ)

n

∑
k=1
P

(k,b)
Ak1B

+ log ρAn1B)} (5.151)

where we have used Eq. 5.150 in the first line and the variational expression in Eq. 5.18 in
the second line. For the trace of exponential term in the last expression above, we can use
the generalised Golden-Thompson inequality (Theorem 5.1) as

tr exp(logωAn1B + log(δ)
n

∑
k=1

P
(k,b)
Ak1B

+ log ρAn1B)

≤ ∫
∞

−∞
dtβ0(t) tr(ωAn1B e

1−it
2 log(δ)P (1,b)A1B⋯ e

1−it
2 log(δ)P (n,b)

An1B ρAn1B e
1+it

2 log(δ)P (n,b)
An1B⋯ e

1+it
2 log(δ)P (1,b)A1B )

= ∫
∞

−∞
dtβ0(t) tr (ωAn1B (δ

1−it
2 P

(1,b)
A1B

+ P
(1,g)
A1B

)⋯ (δ
1−it

2 P
(n,b)
An1B

+ P
(n,g)
An1B

) ρAn1B

(δ
1+it

2 P
(n,b)
An1B

+ P
(n,g)
An1B

)⋯ (δ
1+it

2 P
(1,b)
A1B

+ P
(1,g)
A1B

)), (5.152)

where we have used the fact that for a projector P and β ∈ C, exp(βP ) = eβP + (I − P ) in
the last line. Define the subnormalised state

ηAn1B ∶= ∫
∞

−∞
dtβ0(t)(δ

1−it
2 P

(1,b)
A1B

+ P
(1,g)
A1B

)⋯ (δ
1−it

2 P
(n,b)
An1B

+ P
(n,g)
An1B

) ρAn1B

(δ
1+it

2 P
(n,b)
An1B

+ P
(n,g)
An1B

)⋯ (δ
1+it

2 P
(1,b)
A1B

+ P
(1,g)
A1B

) (5.153)

Observe that this is just a clever (and correct) way of implementing the first remedy we
discussed in the motivation. From Eq. 5.152, we have

tr exp(log ρAn1B + log(δ)
n

∑
k=1

P
(k,b)
Ak1B

+ logωAn1B) ≤ tr(ωAn1BηAn1B) (5.154)

Plugging this in Eq. 5.151, we get

ng2(ε) log 1
δ
≥ sup
ωAn1B

>0
{tr(ρAn1B logωAn1B) + 1 − tr(ωAn1BηAn1B)}

=Dm(ρAn1B ∣∣ηAn1B). (5.155)

We will now show that the state η has a small smooth max-relative entropy distance from
ρ. We use the substate theorem for this. However, we need to be a bit careful since η is not
normalised.
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Claim 5.15. For µ(ε, δ) ∶= (g2(ε) log 1
δ
)

1/3 (we will use the shorthand µ going forth)

Dµ
max (ρAn1B ∣∣ηAn1B) ≤ n(µ + µ

3) +
1
µ2 + log 1

1 − µ2 . (5.156)

Proof. Let Z ∶= tr(ηAn1B). Then, using the data processing inequality on the above
Dm(ρAn1B ∣∣ηAn1B) bound, we see that

log 1
Z

≤ ng2(ε) log 1
δ
. (5.157)

We can also upper bound Z as

tr(ηAn1B) = ∫
∞

−∞
dtβ0(t) tr((δ 1−it

2 P
(1,b)
A1B

+ P
(1,g)
A1B

)⋯ (δ
1−it

2 P
(n,b)
An1B

+ P
(n,g)
An1B

) ρAn1B

(δ
1+it

2 P
(n,b)
An1B

+ P
(n,g)
An1B

)⋯ (δ
1+it

2 P
(1,b)
A1B

+ P
(1,g)
A1B

))

≤ ∫
∞

−∞
dtβ0(t) ∥δP

(1,b)
A1B

+ P
(1,g)
A1B

∥
∞

tr((δ 1−it
2 P

(2,b)
A2

1B
+ P

(2,g)
A2

1B
)⋯ (δ

1−it
2 P

(n,b)
An1B

+ P
(n,g)
An1B

) ρAn1B

(δ
1+it

2 P
(n,b)
An1B

+ P
(n,g)
An1B

)⋯ (δ
1+it

2 P
(2,b)
A2

1B
+ P

(2,g)
A2

1B
))

≤ ∫
∞

−∞
dtβ0(t) tr((δ 1−it

2 P
(2,b)
A2

1B
+ P

(2,g)
A2

1B
)⋯ (δ

1−it
2 P

(n,b)
An1B

+ P
(n,g)
An1B

) ρAn1B

(δ
1+it

2 P
(n,b)
An1B

+ P
(n,g)
An1B

)⋯ (δ
1+it

2 P
(2,b)
A2

1B
+ P

(2,g)
A2

1B
))

≤ ⋯

≤ trρAn1B
= 1. (5.158)

Using the substate theorem, we have

Dµ
max (ρAn1B ∣∣

ηAn1B

Z
) ≤

Dm (ρAn1B ∣∣
ηAn1B

Z ) + 1
µ2 + log 1

1 − µ2

=
Dm (ρAn1B ∣∣ηAn1B) − log 1

Z + 1
µ2 + log 1

1 − µ2

≤
nµ3 + 1
µ2 + log 1

1 − µ2

≤ nµ +
1
µ2 + log 1

1 − µ2 (5.159)

where we have used Z ≤ 1 in the third line.
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We can get rid of Z normalisation factor by using Eq. 5.157

Dµ
max (ρAn1B ∣∣ηAn1B) =D

µ
max (ρAn1B ∣∣

ηAn1B

Z
) + log 1

Z

≤ n(µ + µ3) +
1
µ2 + log 1

1 − µ2 (5.160)

�

Though η has a nice form, it is still difficult to use the properties of the projectors P (k,g)
Ak1B

(Eq. 5.140) with it. We will now show how we can dominate η using a state of the form in
Eq. 5.146.

Claim 5.16. Define the subnormalised state σAn1B ∶= P√
δ[P

(1,g)
A1B

] ○⋯ ○P√
δ[P

(n,g)
An1B

](ρAn1B) for
P√

δ[Π](X) = ΠXΠ +
√
δΠ⊥XΠ⊥ as defined in Eq. 5.145. For this state, we have

Dµ
max (ρAn1B ∣∣σAn1B) ≤ n(µ + µ

3) + n log(1 +
√
δ) +

1
µ2 + log 1

1 − µ2 . (5.161)

Proof. Let X be an arbitrary positive operator, and Π and Π⊥ = 1−Π be orthogonal projec-
tors. Asymmetric pinching (Lemma 3.13) with the projectors Π and Π⊥, and parameter

√
δ

shows that for all t ∈ R

(Π + δ
1−it

2 Π⊥)X(Π + δ
1+it

2 Π⊥) ≤ (1 +
√
δ)ΠXΠ + (1 + 1

√
δ
) δΠ⊥XΠ⊥

= (1 +
√
δ)P√

δ[Π](X) (5.162)

Using Eq. 5.162 repeatedly, we have that for every t ∈ R

(δ
1−it

2 P
(1,b)
A1B

+ P
(1,g)
A1B

)⋯ (δ
1−it

2 P
(n,b)
An1B

+ P
(n,g)
An1B

) ρAn1B (δ
1+it

2 P
(n,b)
An1B

+ P
(n,g)
An1B

)⋯ (δ
1+it

2 P
(1,b)
A1B

+ P
(1,g)
A1B

)

≤ (1 +
√
δ)(δ

1−it
2 P

(1,b)
A1B

+ P
(1,g)
A1B

)⋯ (δ
1−it

2 P
(n−1,b)
An−1

1 B
+ P

(n−1,g)
An−1

1 B
) P√

δ[P
(n,g)
An1B

](ρAn1B)

(δ
1+it

2 P
(n−1,b)
An−1

1 B
+ P

(n−1,g)
An−1

1 B
)⋯ (δ

1+it
2 P

(1,b)
A1B

+ P
(1,g)
A1B

)

≤ ⋯

≤ (1 +
√
δ)nP√

δ[P
(1,g)
A1B

] ○ ⋯ ○ P√
δ[P

(n,g)
An1B

](ρAn1B) (5.163)

which implies that

ηAn1B ≤ (1 +
√
δ)nP√

δ[P
(1,g)
A1B

] ○ ⋯ ○ P√
δ[P

(n,g)
An1B

](ρAn1B). (5.164)

This bound essentially says that the Dmax between these two states is small:

Dmax(ηAn1B ∣∣σAn1B) ≤ n log(1 +
√
δ) (5.165)

Combining this with the smooth Dmax bound between ρ and η (Eq. 5.160) shows the bound
in the claim. �
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The only thing left to do now is to show that min-entropy of the state σ is large, i.e.,
≳ ∑

n
k=1 λk (recall λk ∶= H̄ε

min(Ak∣A
k−1
1 B)ρ). Note that

σAn1B = ∑
ln1 ∈{g,b}n

δ
1
2ωb(l

n
1 )P

(1,l1)
A1B

P
(2,l2)
A2

1B
⋯P

(n,ln)
An1B

ρAn1B P
(n,ln)
An1B

⋯P
(2,l2)
A2

1B
P

(1,l1)
A1B

(5.166)

where ωb(ln1 ) ∶= ∣{i ∶ li = b}∣ the weight of b labels in the string ln1 . We will now bound the
min-entropy of each of the terms in this summation. Roughly speaking, whenever the label
lk = g (a good projector is applied), λk amount of min-entropy will be accumulated but
when the projector is bad O(log ∣A∣) amount of min-entropy will be lost. The reason, we are
still able to accumulate a large amount of min-entropy for the state σAn1B is because these
terms are also weighted with the factor δ 1

2ωb(l
n
1 ). If the number of bad projectors in a term

is large, then this factor ensures that the contribution of this term is small.

Claim 5.17. For every k ∈ [n] and lk ∈ {g, b}, we have

P
(k,lk)
Ak1B

ρAk1B P
(k,lk)
Ak1B

≤

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(1 + g1(ε))e−λk 1Ak ⊗ρAk−1
1 B if lk = g

4∣A∣(1 + g1(ε))1Ak ⊗ρAk−1
1 B if lk = b

(5.167)

which can succinctly be written as

P
(k,lk)
Ak1B

ρAk1B P
(k,lk)
Ak1B

≤ (1 + g1(ε))e
−λkδ(lk,g)(4∣A∣)δ(lk,b) 1Ak ⊗ρAk−1

1 B (5.168)

where δ(x,y) is the Kronecker delta function (δ(x,y) = 1 if x = y else it is 0).

Proof. Let’s first consider the case when lk = g. In this case, we have

P
(k,g)
Ak1B

ρAk1B P
(k,g)
Ak1B

≤ (1 + g1(ε))ρ̃
(k)
Ak1B

≤ (1 + g1(ε))e
−λk 1Ak ⊗ρAk−1

1 B (5.169)

where the first line follows from the definition of the good projectors (Eq. 5.140) and the
second line follows from Eq. 5.138.

When lk = b, we have

P
(k,b)
Ak1B

ρAk1B P
(k,b)
Ak1B

≤ 2ρAk1B + 2P (k,g)
Ak1B

ρAk1B P
(k,g)
Ak1B

≤ 2ρAk1B + 2(1 + g1(ε))ρ̃
(k)
Ak1B

≤ 2(1 + g1(ε)) (∣A∣1Ak ⊗ρAk−1
1 B + e

−λk 1Ak ⊗ρAk−1
1 B)

≤ 4∣A∣(1 + g1(ε))1Ak ⊗ρAk−1
1 B (5.170)
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where in the first line we have used Lemma 5.12, in the second line we have used Eq. 5.140,
in the third line we have used ρAk1B ≤ ∣A∣1Ak ⊗ρAk−1

1 B and Eq. 5.138, and in the last line we
use λk ≥ − log ∣A∣. �

For every k, let ck(lk) ∶= e−λkδ(lk,g)(4∣A∣)δ(lk,b) so that

P
(k,lk)
Ak1B

ρAk1B P
(k,lk)
Ak1B

≤ (1 + g1(ε))ck(lk)1Ak ⊗ρAk−1
1 B. (5.171)

Now, observe that for each term in the summation in Eq. 5.166

P
(1,l1)
A1B

P
(2,l2)
A2

1B
⋯P

(n,ln)
An1B

ρAn1B P
(n,ln)
An1B

⋯P
(2,l2)
A2

1B
P

(1,l1)
A1B

≤ (1 + g1(ε))cn(ln)P
(1,l1)
A1B

P
(2,l2)
A2

1B
⋯P

(n−1,ln−1)
An−1

1 B
1An ⊗ρAn−1

1 B P
(n−1,ln−1)
An−1

1 B
⋯P

(2,l2)
A2

1B
P

(1,l1)
A1B

= (1 + g1(ε))cn(ln)1An ⊗P
(1,l1)
A1B

P
(2,l2)
A2

1B
⋯P

(n−1,ln−1)
An−1

1 B
ρAn−1

1 B P
(n−1,ln−1)
An−1

1 B
⋯P

(2,l2)
A2

1B
P

(1,l1)
A1B

≤ ⋯

≤ (1 + g1(ε))
n (

n

∏
k=1

ck(lk))1An1 ⊗ρB. (5.172)

Plugging this bound into the expression for σ in Eq. 5.166, we get

σAn1B = ∑
ln1 ∈{g,b}n

δ
1
2ωb(l

n
1 )P

(1,l1)
A1B

P
(2,l2)
A2

1B
⋯P

(n,ln)
An1B

ρAn1B P
(n,ln)
An1B

⋯P
(2,l2)
A2

1B
P

(1,l1)
A1B

≤ (1 + g1(ε))
n
⎛

⎝
∑

ln1 ∈{g,b}n
δ

1
2ωb(l

n
1 )

n

∏
k=1

ck(lk)
⎞

⎠
1An1 ⊗ρB. (5.173)

Let us now bound the expression

∑
ln1 ∈{g,b}n

δ
1
2ωb(l

n
1 )

n

∏
k=1

ck(lk) = ∑
ln1 ∈{g,b}n

n

∏
k=1

√
δ
δ(lk,b) n

∏
k=1

e−λkδ(lk,g)(4∣A∣)δ(lk,b)

= ∑
ln1 ∈{g,b}n

n

∏
k=1

e−λkδ(lk,g)(4∣A∣
√
δ)δ(lk,b)

=
n

∏
k=1

(e−λk + 4∣A∣
√
δ)

=
n

∏
k=1

e−λk (1 + 4∣A∣eλk
√
δ)

≤
n

∏
k=1

e−λk (1 + 4∣A∣2
√
δ

1 − ε2)

= (1 + 4∣A∣2
√
δ

1 − ε2)
n

e−∑
n
k=1 λk (5.174)
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where we have used λk ≤ log ∣A∣
1−ε2 in the second last line. Combining Eq. 5.173 and Eq. 5.174,

we get

Hmin(A
n
1 ∣B)σ ≥ −Dmax(σAn1B ∣∣1An1 ⊗ρB)

≥
n

∑
k=1
λk − n log(1 + 4∣A∣2

√
δ

1 − ε2) − n log(1 + g1(ε))

≥
n

∑
k=1
H̄ε

min(Ak∣A
k−1
1 B)ρ − n log(1 + 4∣A∣2

√
δ

1 − ε2) − n log(1 + g1(ε)) (5.175)

Finally, we can use the entropic triangle inequality in Lemma 3.6 along with Eq. 5.161 to
get

Hµ
min(A

n
1 ∣B)ρ ≥

n

∑
k=1

H̄ε
min(Ak∣A

k−1
1 B)ρ − n log(1 + 4∣A∣2

√
δ

1 − ε2) − n log(1 + g1(ε))

− n log(1 +
√
δ) − n(µ + µ3) −

1
µ2 − log 1

1 − µ2 (5.176)

where µ = (g2(ε) log 1
δ
)

1/3. We choose the parameter δ = ε2, so that we have

Hµ
min(A

n
1 ∣B)ρ ≥

n

∑
k=1
H̄ε

min(Ak∣A
k−1
1 B)ρ − n log (1 + 4∣A∣2

ε

1 − ε2) − n log(1 + g1(ε))

− n log(1 + ε) − n(µ + µ3) −
1
µ2 − log 1

1 − µ2 (5.177)

for µ = (8(1 + ε1/3) log 1
ε
)

1/3
ε1/9 = O(ε1/9 (log 1

ε
)

1/3
). �

We complete the proof of the universal chain rule by transforming all the entropies to
H↓,εmin in the following theorem.

Theorem 5.18. For a state ρAn1B and ε ∈ (0,1), we have the chain rule

H
↓,2µ+ε/4
min (An1 ∣B)ρ ≥

n

∑
k=1
H
↓,ε/4
min (Ak∣A

k−1
1 B)ρ − n log (1 + 4∣A∣2

ε

1 − ε2) − n log(1 + g1(ε))

− n log(1 + ε) − n(µ + µ3) −
1
µ2 − log 1

1 − µ2 − log (
2
µ2 +

1
1 − µ) (5.178)

where

µ ∶= (8(1 + ε1/3) log 1
ε
)

1/3
ε1/9 = O (ε1/9 (log 1

ε
)

1/3
) (5.179)

g1(ε) ∶=
8
3(1 + ε1/3)ε1/3 log 1

ε
+ (1 + ε1/3 + ε2/3)ε1/3 = O (ε1/3 log 1

ε
) (5.180)

as long as µ ∈ (0,1).
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Proof. Case 1: If ρAn1B is full rank, then we can use the lemma above along with Eq. 2.42
and Lemma 5.11 to show that

H↓,2µmin (An1 ∣B)ρ ≥
n

∑
k=1
H
↓,ε/2
min (Ak∣A

k−1
1 B)ρ − n log (1 + 4∣A∣2

ε

1 − ε2) − n log(1 + g1(ε))

− n log(1 + ε) − n(µ + µ3) −
1
µ2 − log 1

1 − µ2 − log (
2
µ2 +

1
1 − µ) . (5.181)

Case 2: Now, we can follow the same argument as the one in Case 2 of the proof of
Theorem 5.7 to derive the bound in the theorem statement for all states ρ. �

5.5. Conclusion
We developed a powerful proof technique combining the entropic triangle inequality,

the generalised Golden-Thompson inequality and the substate theorem for proving entropic
bounds for approximation chains. We used this technique to prove novel chain rules–
the universal smooth min-entropy chain rule and the unstructured approximate entropy
accumulation theorem. Importantly, both of these chain rules can be used meaningfully for
arbitrarily large number of systems.

As far as applications are concerned, we use the unstructured approximate EAT to
prove the security of parallel DIQKD in the next chapter. We expect the universal chain
rule to aid in transforming von Neumann entropy based arguments to one-shot arguments.
Furthermore, it provides a straightforward solution to problems such as the approximately
independent registers problem discussed in Sec. 3.3. It is also our conviction that the proof
technique introduced in this chapter will be useful for tackling other problems. For instance,
it should be possible to use it to derive similar chain rules for one-shot variants (e.g., Imax)
of the (multipartite) mutual information.

As discussed in Sec. 5.3.2, it seems possible to decouple the smoothing parameter and
the approximation parameter in certain scenarios, especially those involving DIQKD. We
leave the problem of determining whether these parameters can be decoupled using testing
for future work. This is an interesting and important question, which could potentially lead
to significant improvements in the security proof of parallel DIQKD and the analysis of
DIQKD with leakage.

Finally, we did not attempt to optimise our bounds here, but it should be interesting to
study the absolute limits of the entropic error terms and the smoothing errors in our chain
rules.
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Chapter 6

Security for parallel DIQKD

6.1. Introduction
We introduced device-independent quantum key distribution (DIQKD) in Sec. 2.8.

These protocols involve multiple rounds of a non-local game (Definition 2.32), which can
be played either sequentially or in parallel, depending on which the protocols themselves
are termed sequential or parallel. Sequential protocols are comparatively easier to analyse
as they can be broken down into smaller steps, each depending only on the preceding steps.
Each of these steps is itself simply an instance of the non-local game with some state shared
between the Alice and Bob. In contrast, during parallel DIQKD, the two parties input
all the questions for the multiple games into their devices and receive all the answers at
once. This simultaneous nature makes the analysis of these protocols significantly more
challenging, as there really is just one quantum channel depending on all the questions
which produces all the answers. There is no natural way to decompose it further. From the
viewpoint of implementations, however, parallel DIQKD protocols could potentially lead to
faster implementations. Moreover, from a foundational perspective, these protocols remove
the sequential or time-ordering assumption in secure key distribution. Thus, investigating
the security of these protocols is an important and interesting question.

The challenge of breaking down parallel protocols into smaller, more manageable steps
for analysis is also encountered when studying the parallel repetition of non-local games. A
parallel repetition of a non-local game G, denoted Gn, consists of n instances of the game G
played simultaneously. Formally, it is defined as:

Definition 6.1 (Parallel repetition of a non-local game). The n-parallel repetition of a non-
local game, G = (X ,Y,A,B,ΠXY , V ), is the non-local game Gn = (X n,Yn,An,Bn,Π⊗n

XY , V
n),

where Alice and Bob are given the questions xn1 ∈ X n and yn1 ∈ Yn respectively sampled



according to the distribution Π⊗n
XY (independently and identically according to ΠXY ). Alice

and Bob reply with answers an1 ∈ An and bn1 ∈ Bn according to their (classical or quantum)
strategy. They win the game if for every 1 ≤ i ≤ n, they satisfy the predicate V (xi, yi, ai, bi).

For the parallelly repeated game Gn, one can always play the optimal strategy for
game G independently n times. This yields a lower bound on the winning probability
(Definition 2.32): ωS(G)n ≤ ωS(Gn) (where strategy S can be either classical or quan-
tum). However, it’s natural to ask whether it’s possible to significantly outperform this
strategy for Gn. While it may not be immediately apparent, there are examples of games
where ωS(G)n < ωS(Gn). For instance, the FFL game [Hol09, Appendix A] exhibits
ωc(G2) = ωc(G) < 1 and ωq(G2) = ωq(G) < 1. Roughly speaking, this improvement arises
because players can correlate their answers across parallel games, thereby correlating the
winning conditions and achieving a higher overall winning probability than independent
play would allow. The parallel repetition question asks whether the winning probability of
Gn decays exponentially in n. For classical strategies, this exponential decay was proven
in [Raz98,Hol09]. In the quantum case, it has been demonstrated for large classes
of games [CSUU08, JPY14, CS14, CWY15,DSV14, BVY21], but remains an open
question for general games. Currently, for general quantum games, the best known bound
for ωq(Gn) decays only polynomially in n [Yue16].

The fundamental idea behind these works on parallel repetition is that one can simulate
the probability distributions and states created by the strategy for the parallelly repeated
game Gn, conditioned on an event Ω defined in terms of a small subset (≤ δn for small δ > 0)
of the questions and answers, using a single-round strategy for the game G. In this single-
round simulation strategy, the game G is actually embedded in a particular round j of the
game Gn. Specifically, it is shown that the distribution of questions at index j, conditioned
on the event Ω, has the same distribution as the questions of the game G. Furthermore, it
is demonstrated that one can define appropriate measurements which produce answers Aj
and Bj for Alice and Bob, respectively, with the same distribution as they would have in
Gn conditioned on Ω. Using this simulation, it can then be shown that the winning proba-
bility for round j cannot be significantly larger than that of winning the single-round game G.

In this work, we apply techniques developed for the analysis of the parallel repetition of
anchored games [BVY21] to create a proof for parallel DIQKD which uses CHSH games.
Specifically, we demonstrate that for a random subset of size δn of the games, Alice’s answer
for every game in the subset can be approximately viewed as the output of a single-round
strategy, similar to the parallel repetition setting. In the language of approximation chains,
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we show that the state produced at the end of the protocol, ρAn1Bn1Xn
1 Y

n
1 E

, where Xn
1 , Y

n
1

are the questions, An1 ,Bn
1 are the answers for the non-local games, and E is the adversary’s

register, has an approximation chain (σ
(k)
Ak1B

k
1X

k
1 Y

k
1 E

)
n

k=1
satisfying:

σ
(k)
Ak1B

k
1X

k
1 Y

k
1 E

=MRk→XkYkAkBk
k (σ

(k,0)
Ak−1

1 Bk−1
1 Xk−1

1 Y k−1
1 RkE

) (6.1)

where Mk is the channel applied by participants playing a single-round of a variant of the
CHSH game. With this result, we can leverage the fact that Alice’s answers for a single-
round CHSH game are random with respect to the adversary when the CHSH game is won
with high probability. We first present this idea with a proof sketch for security based on von
Neumann entropies in Section 6.6. This allows us to concretely demonstrate how parallel
repetition techniques can be used for proving security. However, the von Neumann entropy
based bounds, we derive here, are not strong enough to prove security. In the subsequent
section, Section 6.7, we use the unstructured approximate EAT to port the bound to a
smooth min-entropy bound.

6.1.1. Comparison with previous work

[JMS20] provided the first proof for parallel DI-QKD. Their QKD protocol is
based on the Magic Square game. The security proof for this protocol relies on using
the parallel repetition theorem for free games (games where questions have a product
distribution) with multiple (more than 2) players. [JMS20] views the setting of DIQKD
with Alice, Bob, and Eve as the parallel repetition of a multiplayer game. In this context,
exp (−Hε

min(Raw Key∣Eve’s information)), where the raw key consists of Alice’s answers
on a random subset, can be interpreted as the winning probability for this game. Since
the winning probability decays exponentially in the number of rounds due to the parallel
repetition result, the smooth min-entropy can be bounded by Ω(n). This proof relies on
three key properties of the Magic Square game: (1) it samples questions uniformly, (2) there
exists a quantum strategy to win it perfectly, and (3) under this perfect strategy, Alice and
Bob receive a perfectly correlated uniform random bit.

[Vid17] significantly simplified the security proof given by [JMS20]. The key idea
remains viewing the QKD protocol as a parallel repetition of a 3-player game between Alice,
Bob and Eve. This 3-player Magic Square game is won if Alice and Bob win the Magic
Square game and if Eve correctly guesses Alice’s answer. A technique developed for studying
non-local games called “immunization” [KKM+08] is used by [Vid17] to prove that the
3-player game has a winning probability strictly less than 1. The parallel repetition theorem
for anchored games [BVY21] is then used to show that the winning probability of the
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repeated game is 2−Ω(n). This is subsequently used to bound Eve’s guessing probability of
Alice’s answers and hence the min-entropy for Alice’s answers given Eve’s system. [Vid17]’s
proof also utilises the same properties of the Magic Square game as [JMS20]. Building on
these works, [JK22] also proves the security of a similar parallel DIQKD protocol in the
presence leakage from Alice and Bob’s devices.

In comparison to these proofs, our proof is not limited by the properties of the games
used for the DIQKD protocol. We demonstrate our protocol using the CHSH game, showing
how to convert it into an anchored game suitable for parallel DIQKD– a technique we
believe should be applicable to other games as well. Further, our work offers an alternative
security proof for parallel DIQKD, employing a more information-theoretic approach. This
method decomposes the large quantum device playing parallel CHSH games into smaller
single-round CHSH game playing devices. In contrast, [JMS20] and [Vid17] reduce the
security proof to bounding the winning probability of a parallelly repeated game. We hope
that our approach can provide greater insight into the problem and aid in solving open
problems like the security of parallel device-independent randomness expansion. From
another perspective, techniques from parallel repetition lie at the heart of both our proof
and those of [JMS20] and [Vid17], highlighting the fundamental importance of these
methods in analysing parallel protocols.

On the downside, our proof strategy couples the security parameter of the DIQKD pro-
tocol to its rate. For a choice of security parameter of Õ(ε), our approach can only prove
security for a rate of Ω(ε192). This is not a limitation of the proofs in [JMS20] and [Vid17].
It might be possible to break this linkage by further refining the unstructured approximate
EAT as mentioned in the previous chapter, but we leave this for future work. Finally, it is
important to note that our protocol and the protocols in [JMS20] and [Vid17] are intended
as proofs of concept. The key rates for these parallel DIQKD protocols are currently too
small for practical implementation.

6.2. Preliminaries
In this chapter, we follow [BVY21] in using the notation JxK = ∣x⟩ ⟨x∣ to represent a

classical value x. We also denote the density operator for a pure state ∣ψ⟩ as ψ.

Recall that a non-local game G is represented as G = (X ,Y ,A,B,ΠXY , V ), where X and
Y are the sets of Alice and Bob’s questions, A and B are the sets of their answers, ΠXY is
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the probability distribution of their questions and V is the winning predicate.

For the standard CHSH game, we have X = Y = A = B = {0,1}, ΠXY is the uniform
distribution on all possible questions and the predicate V (x,y,a,b) = ¬[a ⊕ b ⊕ (x ∧ y)]. We
refer to this game as the CHSH game or the 2CHSH game.

This nomenclature helps distinguish it from the 3CHSH game, which is usually used for
DIQKD (see 2.8.2). In this game, Alice’s questions lie in {0,1} and Bob’s question lie in
{0,1,2}. These questions are sampled according to the probability distribution

PXY (x,y) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 − ν if x = 0, y = 2

ν/4 if x, y ∈ {0,1}

where ν ∈ (0,1) is a parameter which we will fix later. For the questions x,y ∈ {0,1}, Alice
and Bob win this game if they win the standard CHSH game, that is, if ¬[a⊕ b⊕ (x∧ y)] is
true. On questions (x,y) = (0,2), they win if their answers are equal.

We require the following anchoring transform for non-local games in order to describe
our protocol.

Definition 6.2 (Anchoring transform [BVY21]). Let G = (X ,Y ,A,B,ΠXY , V ) be a non-
local game and 0 < α ≤ 1. In the α-anchored game G⊥ ∶= (X ∪ {⊥},Y ∪ {⊥},A,B,Π⊥XY , V⊥),
the Referee first uses ΠXY to sample questions x,y for Alice and Bob. Then, randomly and
independently with probability α, he replaces each of x and y with an auxiliary “anchor”
symbol ⊥ to obtain the questions for the anchored game G⊥. Alice and Bob win the game if
either one of the questions was ⊥, or if their answers a,b satisfy the original game’s predicate,
that is, V (x,y,a,b) = 1. The quantum winning probability for the anchored game satisfies

ωq(G⊥) = 1 − (1 − α)2(1 − ωq(G)).

We call the game obtained after applying the anchoring transform for α ∈ (0,1) to the
3CHSH game, the 3CHSH⊥ game. Once again, we will consider α to be a parameter and fix
it later.

A strategy S for a non-local game G = (X ,Y ,A,B,ΠXY , V ) consists of the tuple
(ΨEAEB ,{Ax}x∈X ,{By}y∈Y) where ΨEAEB is the quantum state shared by Alice and Bob, Ax
is the measurement used by Alice on question x, and By is the measurement used by Bob
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on question y.

If a quantum strategy wins the 2CHSH game with a probability strictly greater than
3/4, then Alice’s answer is guaranteed to be random with respect to any purification of the
initial state held by the adversary, Eve, and the questions for the game. This statement
is quantified in the entropic bound given in Lemma 2.33. We state a counterpart for this
lemma for the 3CHSH⊥ game. It follows fairly easily from Lemma 2.33. We prove it in
Appendix D.1.

Lemma 6.3. Suppose that a given quantum strategy for the 3CHSH⊥ game starting with
ρ
(0)
EAEBE

wins the 3CHSH⊥ game with probability ω ∈ [1 − (1−α)2ν
4 ,1 − 2−

√
2

4 (1 − α)2ν]. Let X
and Y be Alice and Bob’s questions during the game, and A and B be their answers produced
according to this strategy. Then, for the post measurement state ρXY ABE, we have

H(AB∣EXY )ρ ≥H(A∣EX)ρ ≥ (1 − α)F (gα,ν(ω)) (6.2)

where the functions F and gα,ν(ω) are given by

F (x) = log(2) − h(
1
2 +

1
2
√

3 − 16x (1 − x)) for gα,ν(ω) = 1 − 1 − ω
ν(1 − α)2 . (6.3)

6.3. Protocol
Before we describe our protocol for parallel DIQKD, we must introduce a key result

from [BVY21]. For every α-anchored game G⊥ ∶= (X ,Y,A,B, PXY ,V ) (a game produced
by applying the anchoring transform), [BVY21, Section 4.1] shows that the probability
distribution PXY can be extended to the distribution P̂ΩXY such that

P̂XY ∶= PXY (6.4)

P̂ΩXY = P̂ΩP̂X ∣ΩP̂Y ∣Ω. (6.5)

This extension plays a crucial role in our protocol, as we will demonstrate in the subsequent
sections. In this work, we will call the random variable Ω the seed randomness for the
questions. We note that Ω is defined such that it can be sampled efficiently by Alice. Given
Ω, Alice and Bob can independently sample their questions for the game, G⊥.

For the rest of the chapter, let the tuple (X ,Y,A,B, PXY ,V ) represent the 3CHSH⊥
game. We will drop the hat notation while referring to the extension distribution for this
question distribution. We simply refer to it as PΩXY .

134



Parameters:
– α, ν ∈ (0,0.1) are parameters for the 3CHSH⊥
– δ ∈ (0,12) determines the size of the raw key
– ωth ∈ (1 − (1−α)2ν

4 ,1 − 2−
√

2
4 (1 − α)2ν) is the threshold for the winning probability

on the test round
– γ ∈ (0,1) parameter for sampling testing rounds.

Parallel DIQKD protocol
(1) Alice randomly samples Ωn

1 independently and identically.
(2) Alice sends Ωn

1 to Bob.
(3) Alice and Bob use Ωn

1 to sample the questions Xn
1 and Y n

1 for the 3CHSH⊥ game.
(4) Alice and Bob use their questions to play n 3CHSH⊥ games. Let An1 and Bn

1 be
the answers.

(5) Alice randomly selects a subset J = {I1, I2,⋯, It} of size t = δ
log ∣A∣∣B∣+δn. She

announces this subset to Bob.
(6) For each i ∈ [t], Alice randomly selects a Tj ∈ {0,1} with probability Pr(Tj = 1) =

γ. Let S ∶= {Ij ∶ j ∈ [t] and Tj = 1} ⊆ J . She announces S, her questions XS, and
answers AS for this subset of the games.

(7) Bob checks whether ∑i∈S V (Xi, Yi,Ai,Bi) ≥ γωtht. Alice and Bob abort if this is
not satisifed.

(8) AJ and BJ are Alice and Bob’s raw keys. They use information reconciliation
and privacy amplification to create a secret key.

Protocol 6.1

We present the protocol for parallel DIQKD in Protocol 6.1. Note that this protocol does
not fully reveal the questions to Eve. Unlike sequential DI-QKD, where Alice and Bob can
reveal all of their questions to Eve, the security proofs for parallel DI-QKD require that Alice
and Bob only reveal a small fraction of their questions to Eve(1). Similarly, in our setting,
since only Ωn

1 are revealed to Eve, only a fraction of the information about the questions is
leaked to Eve. Importantly, this is the main obstacle to extending these techniques to prove
security for parallel device-independent randomness extraction. It should be noted that the
previous protocols and proofs [JMS20,Vid17] required the probability distributions of Alice
and Bob’s questions to be a product distribution, so that both Alice and Bob could sample
their questions independently. However, by utilising the anchoring transform and the seed
randomness we are able to relax this constraint.

(1)In the parallel DIQKD protocol of [JMS20] only a small fraction of the questions are announced
publicly. In the protocol used by [Vid17], Alice and Bob can reveal any fraction smaller than 1.
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6.4. Setup
As indicated in Protocol 6.1 we let Ωn

1 be the randomness seed for the questions shared
by Alice. Xn

1 and Y n
1 denote Alice and Bob’s questions for the n 3CHSH⊥ games during the

protocol, and An1 and Bn
1 denote their answers for these games.

In order to analyse the protocol, we fix a strategy for Eve. Let’s suppose that Eve
distributes the registers EA and EB of the pure state ψEAEBE between Alice and Bob,
keeping register E for herself(2). Let Alice and Bob use measurements {AEAxn1

(an1)}an1 and
{BEB

yn1
(bn1)}bn1 to measure their registers EA and EB respectively given questions xn1 and yn1 .

The state after all the 3CHSH⊥ games have been played will be denoted as ρ. We have
that

ρΩn1Xn
1 Y

n
1 A

n
1B

n
1E

= ∑
ωn1 ,x

n
1 ,y

n
1

PΩn1Xn
1 Y

n
1
(ωn1 , x

n
1 , y

n
1 )Jωn1 , xn1 , yn1 K

⊗ ∑
an1 ,b

n
1

Jan1 , bn1K⊗ trEAEB (AEAxn1
(an1) ⊗B

EB
yn1

(bn1)ψEAEBE) (6.6)

where PΩn1Xn
1 Y

n
1
is the i.i.d. distribution P⊗n

ΩXY . We can also write the above as

ρΩn1Xn
1 Y

n
1 A

n
1B

n
1E

= ∑
ωn1 ,x

n
1 ,y

n
1

PΩn1Xn
1 Y

n
1
(ωn1 , x

n
1 , y

n
1 )Jωn1 , xn1 , yn1 K

⊗ ∑
an1 ,b

n
1

PAn1Bn1 ∣Xn
1 Y

n
1
(an1 , b

n
1 ∣x

n
1 , y

n
1 )Jan1 , bn1K⊗ ρ(x

n
1 ,y

n
1 ,a

n
1 ,b

n
1 )

E (6.7)

for PAn1Bn1 ∣Xn
1 Y

n
1
(an1 , b

n
1 ∣x

n
1 , y

n
1 ) = tr (AEAxn1 (an1) ⊗B

EB
yn1

(bn1)ψEAEBE) and

ρ
(xn1 ,yn1 ,an1 ,bn1 )
E ∶=

trEAEB (AEAxn1
(an1) ⊗B

EB
yn1

(bn1)ψEAEBE)

PAn1Bn1 ∣Xn
1 Y

n
1
(an1 , b

n
1 ∣x

n
1 , y

n
1 )

. (6.8)

We will also use the notation PΩn1Xn
1 Y

n
1 A

n
1B

n
1
∶= ρΩn1Xn

1 Y
n
1 A

n
1B

n
1
.

Using ρ in the form in Eq. 6.7, we can further define the state of register E conditioned
on other classical variables, for example register E conditioned on ωn1 is

ρ
(ωn1 )
E = ∑

xn1 ,y
n
1 ,a

n
1 ,b

n
1

PXn
1 Y

n
1 A

n
1B

n
1 ∣Ωn1 (x

n
1 , y

n
1 , a

n
1 , b

n
1 ∣ω

n
1 )ρ

(xn1 ,yn1 ,an1 ,bn1 )
E (6.9)

= E
xn1 y

n
1 a

n
1 b
n
1 ∣ωn1

[ρ
(xn1 ,yn1 ,an1 ,bn1 )
E ] . (6.10)

Finally, we let F (for “fail”) denote the event that the protocol aborts.
(2)The state can be considered pure. If it were not, then purifying it and providing Eve the purification

register would only increase Eve’s information.
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6.5. Key results from [BVY21]
In Protocol 6.1, we have chosen

t =
δ

log ∣A∣∣B∣ + δ
n. (6.11)

In our security analysis, we will fix a subset C ⊆ J and show that for any such set we can
embed a single-round 3CHSH⊥ game in a random index outside this set. The value of t above
guarantees that for any such subset C ⊆ J , we have

∣C ∣

n − ∣C ∣
log ∣A∣∣B∣ ≤ δ. (6.12)

The results established in [BVY21] for parallel repetition settings remain applicable in our
context, with minor modifications (see Appendix D.2 for a detailed discussion). Specifically,
these results can be adapted to our setting by introducing a reference register E. In this
section, we present the key definitions and results from [BVY21] which are used in our
security proof.

Following [BVY21, Section 4.2], for the subset C ⊆ [n] and i ∈ Cc = [n] ∖ C, we define
the dependency breaking variable R−i as

R−i ∶= (Ωj)j∈[n]∖(C∪{i}) ∪ (XC , YC ,AC ,BC). (6.13)

We also use the shorthand Ω−i for (Ωj)j∈[n]∖(C∪{i}) ∪ (XC , YC).

For questions xn1 and yn1 , we define the following measurements for answers on the subset
C ⊆ [n]:

AEAxn1
(aC) = ∑

an1 ∣aC
AEAxn1

(an1) (6.14)

BEB
yn1

(bC) = ∑
bn1 ∣bC

BEB
yn1

(bn1). (6.15)

Here an1 ∣aC denotes strings an1 consistent with aC . bn1 ∣bC is defined similarly.

For subset C ⊆ [n], i ∈ Cc, the seed ω−i = (ωj)j∈[n]∖(C∪{i}) ∪ (xC , yC) (an instantiation of
Ω−i), and questions x and y we also define the measurements:

AEAω−i,x(a
n
1) ∶= E

Xn
1 ∣Ω−i=ω−i,Xi=x

AEAxn1
(an1) (6.16)

=∑
xn1

PXn
1 ∣Ω−iXi(x

n
1 ∣ω−i, x)A

EA
xn1

(an1) (6.17)
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and

BEB
ω−i,y

(bn1) ∶= E
Y n1 ∣Ω−i=ω−i,Yi=y

BEB
yn1

(bn1) (6.18)

=∑
yn1

PY n1 ∣Ω−iYi(y
n
1 ∣ω−i, y)B

EB
yn1

(bn1). (6.19)

Also define

AEAω−i,x(aC) ∶= ∑
an1 ∣aC

AEAω−i,x(a
n
1) (6.20)

BEB
ω−i,y

(bC) ∶= ∑
bn1 ∣bC

BEB
ω−i,y

(bn1). (6.21)

For subset C ⊆ [n], i ∈ Cc, r−i = (ω−i, aC , bC) (an instance of R−i) and questions x and y, we
also define the unnormalised state

∣Φ(r−i,x,y)⟩EAEBE ∶=
√
AEAω−i,x(aC) ⊗

√
BEB
ω−i,y(bC) ∣ψ⟩EAEBE (6.22)

and its normalisation

∣Φ̃(r−i,x,y)⟩EAEBE ∶=
1

∥∣Φ(r−i,x,y)⟩∥
∣Φ(r−i,x,y)⟩EAEBE . (6.23)

It is shown in [BVY21, Proposition 4.9] that

∥∣Φ(r−i,x,y)⟩∥ = (PACBC ∣Ω−iXiYi(ac, bc∣ω−i, x,y))
1/2
. (6.24)

The following result from [BVY21] is the key towards showing that it is possible to
simulate the answers produced by the parallelly repeated strategy at a random index outside
the set C, using a strategy for the single-round 3CHSH⊥ game which embeds the game at
this index.

Proposition 6.4 ( [BVY21, Proposition 5.1]). For every C ⊆ J , i ∈ Cc, dependency breaking
variable r−i, and questions x and y, there exist unitaries UEA

r−i,x acting on EA and V EB
r−i,y acting

on EB such that

E
I
E
R−i

E
XY

∥UEA
r−i,x

⊗ V EB
r−i,y

⊗ 1E ∣Φ̃(r−i,⊥,⊥)⟩EAEBE − ∣Φ̃(r−i,x,y)⟩EAEBE∥ = O(δ1/16/α3), (6.25)

where EI denotes expectation over index I which is sampled uniformly at random from Cc,
ER−i denotes expectation over r−i sampled from PR−i and EXY denotes expectation over the
questions sampled according to the question distribution for the single-round game PXY .
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6.6. Proof approach with von Neumann entropies
We will first demonstrate our proof strategy by proving the requisite entropic statements

with von Neumann entropies instead of one-shot entropies. This approach allows us to
separate the inherent complexity of one-shot entropies from the core concepts of the proof.
We can focus on using the results from the parallel repetition setting for analysing DIQKD
and establishing a clear roadmap for the security proof, instead of grappling with the various
technicalities associated with one-shot entropies. In the next section, we will proceed to
develop a comprehensive one-shot security proof.

For simplicity, we also set aside the testing procedure and the conditioning of the state
on the protocol not aborting. Instead, we simply assume that the state ψEAEBE and the
measurements set up by Eve are such that

Pr
ρ

⎡
⎢
⎢
⎢
⎢
⎣

1
n
∑
i∈[n]

Wi ≥ ωth

⎤
⎥
⎥
⎥
⎥
⎦

≥ 1 − ε (6.26)

where ε is negligibly small. This assumption is effectively equivalent to stating that the
protocol only aborts with a negligible probability. Once again, this restriction allows us to
concentrate on the more challenging aspects of the security proof. In the next section, we
will see that once we properly account for the testing procedure, this assumption can be
eliminated.

In Sec. 2.7.2, we discussed the entropic bounds required for proving the security of QKD.
The same bounds are also sufficient for proving the security of parallel DIQKD. Specifically,
in order to prove that the protocol can securely produce a key of length Ω(n) (that is, it has
a positive key rate), we need to show that the difference

Hε
min(AJ ∣EΩn

1SJASXS)ρ∣¬F −H
ε′

max(AJ ∣BJJ)ρhonest ≥ Ω(n) (6.27)

for small ε and ε′. ρhonest above is the state produced at the end of a protocol with no
adversary, Eve.

We use the conditional entropy H(AJ ∣EΩn
1J)ρ as proxy for the entropy

Hε
min(AJ ∣EΩn

1SJASXS)ρ∣¬F , which quantifies the amount of randomness that can be
safely extracted from the Alice’s raw key using privacy amplification. Similarly, the entropy
H(AJ ∣BJJ)ρhonest serves as a proxy for the information reconciliation cost, which is given by
Hε′

max(AJ ∣BJJ)ρhonest . In our von Neumann security proof, we aim to demonstrate that

H(AJ ∣EΩn
1J)ρ −H(BJ ∣AJJ)ρhonest ≥ Ω(n). (6.28)
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6.6.1. Bounding entropy production for privacy amplification

We begin by showing that Eve’s uncertainty of Alice’s answers AJ measured using von
Neumann entropy is high, that is,

H(AJ ∣EΩn
1J)ρ ≥ Ω(t). (6.29)

This entropy can be expanded using the chain rule as

H(AJ ∣EΩn
1J)ρ =

t

∑
k=1

H(AIk ∣EΩn
1AI1⋯AIk−1J)ρ. (6.30)

Further, we can write the term inside the summation above as the expectation

H(AIk ∣EΩn
1AI1⋯AIk−1J)ρ = E

ik−1
1

[H(AIk ∣EΩn
1Ai1⋯Aik−1Ik)ρ] . (6.31)

For the rest of this section, we focus our attention on this term. Let us fix the choice of
random variables Ik−1

1 = ik−1
1 . We then define the subset C ∶= {i1, i2, . . . , ik−1} ⊆ J . This

notation allows us to maintain clarity and enables us to collectively bound the term inside
the expectation for various values of k and ik−1

1 .

The term H(AIk ∣EΩn
1Ai1⋯Aik−1Ik)ρ will be bounded in two steps. In the first step, we

lower bound it using H(AIk ∣EIkR−IkXIk)ρ, where R−Ik is the dependency breaking random
variable defined with respect to C in Eq. 6.13. In the second step, we show that it is
possible to approximately simulate the state ρAIk IkR−IkXIkE using a quantum strategy for a
single instance of the game, which has high winning probability. This allows us to use the
single-round entropy bound for the 3CHSH⊥ game (Lemma 6.3) to lower bound the entropy
of the answer AIk for the simulated state, and subsequently for ρ as well.

Step 1: Reduction to parallel repetition variables

In the first step, we will show that

H(AIk ∣EΩn
1Ai1⋯Aik−1Ij)ρ ≥H(AIk ∣EIkR−IkXIk)ρ (6.32)

where R−Ik = (Ω−Ik ,XC , YC ,AC ,BC). This is fairly simply. It only requires one to use Markov
chain properties and data processing. Informally speaking, Alice and Bob’s quantum devices
only ever get to see the questions Xn

1 , hence, the uncertainty of the answers only decreases
if we change some Ωis with Xis. We formalise this argument in the following lemma.

Lemma 6.5. Let ρ(0)Ω2
1X

2
1EAE

= ρΩ2
1X

2
1
⊗ ρ

(0)
EAE

be a classical-quantum density operator, where
Ω2

1 and X2
1 are classical registers and EA and E are quantum registers. Further, suppose

that Ω1X1 and Ω2X2 are sampled independently, that is, ρΩ2
1X

2
1
= ρΩ1X1ρΩ2X2. If the register
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EA is measured according to measurement operators {AEA
x2

1
(a2

1)}a2
1
, which depend only on the

classical register X2
1 , then Ω1 ↔X1 ↔ Ω2A2

1E forms a Markov chain.

Proof. We can write ρ(0)Ω2
1X

2
1EAE

as

ρ
(0)
Ω2

1X
2
1EAE

= ∑
ω2

1x
2
1

ρ(x2
1)ρ(ω1∣x1)ρ(ω2∣x2)Jω2

1x
2
1K⊗ ρ

(0)
EAE

.

The post-measurement state is

ρΩ2
1X

2
1A

2
1E

= ∑
ω2

1x
2
1

ρ(x2
1)ρ(ω1∣x1)ρ(ω2∣x2)Jω2

1x
2
1K⊗∑

a2
1

Ja2
1K⊗ trEA(A

EA
x2

1
(a2

1)ρ
(0)
EAE

),

and

ρΩ2
1X1A2

1E
= ∑
ω2

1x
2
1

ρ(x2
1)ρ(ω1∣x1)ρ(ω2∣x2)Jω2

1x1K⊗∑
a2

1

Ja2
1K⊗ trEA(A

EA
x2

1
(a2

1)ρ
(0)
EAE

)

= ∑
ω2

1x1

ρ(x1)ρ(ω1∣x1)ρ(ω2)Jω2
1x1K⊗∑

a2
1

Ja2
1K⊗ trEA(∑

x2

ρ(x2∣ω2)A
EA
x2

1
(a2

1)ρ
(0)
EAE

)

= ∑
ω2

1x1

ρ(x1)ρ(ω1∣x1)ρ(ω2)Jω2
1x1K⊗∑

a2
1

Ja2
1K⊗ trEA(AEAx1ω2(a

2
1)ρ

(0)
EAE

)

where we define AEAx1ω2(a
2
1) ∶= ∑x2 ρ(x2∣ω2)A

EA
x2

1
(a2

1). This state can also be written as

ρX1Ω1Ω2A2
1E

= ∑
x1

ρ(x1)Jx1K⊗ (∑
ω1

ρ(ω1∣x1)Jω1K)

⊗
⎛

⎝
∑
ω2

ρ(ω2)Jω2K⊗∑
a2

1

Ja2
1K⊗ trEA(AEAx1ω2(a

2
1)ρ

(0)
EAE

)
⎞

⎠
.

This proves that Ω1 ↔X1 ↔ Ω2A2
1E form a Markov chain in the state ρX1Ω1Ω2A2

1E
. �

Note that for the variables in the lemma above, we also have Ω1 ↔ Ω2X1A1E ↔ A2 using
properties of Markov chains. We will use this fact in the following.

Fix Ij = ij. Define C ′ ∶= C ∪ {ij}. The state ρ(0)ΩC′ΩC′cXC′XC′cEAE
∶= ρΩC′ΩC′cXC′XC′c ⊗ ψEAE

satisfies the conditions for Lemma 6.5. Moreover, the register EA is measured using the
measurement Axn1 (⋅), which only depends on Xn

1 to create An1 . Therefore, using the lemma
above, we have that the state ρ satisfies

ΩC′ ↔ ΩC′cXC′ACE ↔ ACc (6.33)

⇒ ΩC′ ↔ ΩC′cXC′ACE ↔ Aij . (6.34)

Since, this is true for every ij, we have

ΩCΩIj ↔ IjΩC′cXCXIjACE ↔ AIj . (6.35)
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This allows us to bound

H(AIj ∣EIjΩn
1AC)ρ ≥H(AIj ∣EIjΩn

1XCXIjAC)ρ

=H(AIj ∣EIjΩC′cXCXIjAC)ρ

≥H(AIj ∣EIjR−IjXIj)ρ. (6.36)

In the second line above, we used the fact that if A↔ B ↔ C, then H(A∣BC) =H(A∣B).

Step 2: Simulating ρ using a simple single-round strategy

We will now show that it is possible to approximate the state ρIjR−IjXIjYIjAIjBIjE using a
quantum strategy for a single instance of the 3CHSH⊥ game, which uses (Ij,R−Ij) as shared
classical random variables between Alice and Bob. This step is much more challenging
and requires us to use deeper results from [BVY21]. We use these results primarily to
show that the random variable R−Ij is not too correlated with the answer AIj and hence
H(AIj ∣EIjR−IjXIj)ρ is large.

Consider Proposition 6.4 applied to the subset C ⊆ J defined above. Let UEA
r−i,x and V EB

r−i,y

be the unitaries provided by this proposition. Then, we have that

E
I
E
R−i

E
XY

∥UEA
r−i,x

⊗ V EB
r−i,y

⊗ 1E ∣Φ̃(r−i,⊥,⊥)⟩EAEBE − ∣Φ̃(r−i,x,y)⟩EAEBE∥ = O(δ1/16/α3), (6.37)

where i is sampled uniformly at random from Cc, r−i sampled from PR−i and x,y are
sampled from PXY . This relation hints at a plausible simulation strategy: Eve samples
and distributes I, R−I and the state ∣Φ(r−i,⊥,⊥)⟩EAEBE between Alice and Bob. Then, given
questions x and y during the single-round game, Alice and Bob apply the unitaries UEA

r−i,x

and V EB
r−i,y to their registers. This allows them to bring their shared state close to the state

∣Φ(r−i,x,y)⟩EAEBE. Finally, Alice and Bob use appropriately defined measurements to sample
their answers, simulating a state close to ρIjR−IjXIjYIjAIjBIjE through a single-round strategy
for 3CHSH⊥.

The measurements used by Alice and Bob in this last step are defined as

Âr−i,x(ai) ∶= Aω−i,x(ac)
−1/2 ⎛

⎝
∑

an1 ∣ai,aC
Aω−i,x(a

n
1)

⎞

⎠
Aω−i,x(aC)

−1/2 (6.38)

B̂r−i,y(bi) ∶= Bω−i,y(bc)
−1/2 ⎛

⎝
∑

bn1 ∣bi,bC
Bω−i,y(b

n
1)

⎞

⎠
Bω−i,y(bC)

−1/2 (6.39)
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Single-round protocol for simulating ρIjR−IjXIjYIjAIjBIjE:
(1) Eve chooses the random variable I uniformly at random from Cc, the random

variable R−I according to PR−I depending on the value of I, and distributes both
of them to Alice and Bob.

(2) Eve distributes the registers EA and EB of the state ∣Φ̃(r−i,⊥,⊥)⟩EAEBE between
Alice and Bob.

(3) Alice and Bob play the 3CHSH⊥ game as follows:
(a) Let (i, r−i) be the classical variables provided to them by Eve in the first

step, and let x and y be their questions.
(b) Alice applies the unitary UEA

r−i,x to her register EA. Similarly, Bob applies
V EB
r−i,y to his register EB.

(c) Alice and Bob measure their registers with {Âr−i,x(a)}a and {B̂r−i,y(b)}b to
generate their answers for the game.

Box 6.1

where r−i = (ω−i, aC , bC). We state the simulation protocol for the state ρIjR−IjXIjYIjAIjBIjE
in Box 6.1. Let the state obtained through this simulation procedure be σ.

The proof that the state produced by the simulation in Box 6.1 is close to
ρIjR−IjXIjYIjAIjBIjE parallels the arguments used to prove [BVY21, Lemma 6.2]. We
cannot directly use the results in [BVY21, Section 6.1] because they only focus on the
classical distributions of the answers, whereas we also need to take into account Eve’s
partial state.

The following lemma shows that if Alice and Bob share the state Φ̃(r−i,x,y)
EAEBE

between them
and measure it with the measurements Âr−i,x and B̂r−i,y, then the resulting answers and
Eve’s state are distributed as in the parallely repeated strategy conditioned on the classical
variables r−i, x, y, a, b. Its proof follows the proof of [BVY21, Claim 6.3].

Lemma 6.6. Let ρ(r−i,x,y,a,b)E represent the state ρ conditioned on the classical variables R−i =

r−i,Xi = x,Yi = y,Ai = a, and Bi = b, that is,

ρ
(r−i,x,y,a,b)
E = E

xn1 ,y
n
1 ,a

n
1 ,b

n
1 ∣r−i,x,y,a,b

[ρ
(xn1 ,yn1 ,an1 ,bn1 )
E ] . (6.40)

We have the equality

trEAEB (Âr−i,x(a) ⊗ B̂r−i,y(b)Φ̃
(r−i,x,y)
EAEBE

) = PAiBi∣R−iXiYi(a,b∣r−i, x, y)ρ
(r−i,x,y,a,b)
E . (6.41)
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Proof. Using the definitions of Φ̃(r−i,x,y)
EAEBE

, Âr−i,x(a) and B̂r−i,y(b), we have

trEAEB (Âr−i,x(a) ⊗ B̂r−i,y(b)Φ̃
(r−i,x,y)
EAEBE

) (6.42)

= ∥Φ(r−i,x,y)∥
−2 trEAEB (Âr−i,x(a) ⊗ B̂r−i,y(b)Aω−i,x(aC)

1/2 ⊗Bω−i,y(bC)
1/2Ψ

Aω−i,x(aC)
1/2 ⊗Bω−i,y(bC)

1/2) (6.43)

= ∥Φ(r−i,x,y)∥
−2 trEAEB

⎛

⎝
∑

an1 ∣ai,aC
Aω−i,x(a

n
1) ⊗ ∑

bn1 ∣bi,bC
Bω−i,y(b

n
1)Ψ

⎞

⎠
(6.44)

= ∥Φ(r−i,x,y)∥
−2

∑
an1 ∣ai,aC
bn1 ∣bi,bC

trEAEB ( E
xn1 ∣ω−i,x

Axn1 (a
n
1) ⊗ E

yn1 ∣ω−i,y
Byn1

(bn1)Ψ) (6.45)

= ∥Φ(r−i,x,y)∥
−2 E

xn1 y
n
1 ∣ω−i,x,y

∑
an1 ∣ai,aC
bn1 ∣bi,bC

trEAEB (Axn1 (a
n
1) ⊗Byn1

(bn1)Ψ) (6.46)

= ∥Φ(r−i,x,y)∥
−2 E

xn1 y
n
1 ∣ω−i,x,y

∑
an1 ∣ai,aC
bn1 ∣bi,bC

PAn1Bn1 ∣Xn
1 Y

n
1
(an1 , b

n
1 ∣x

n
1 , y

n
1 )ρ

(xn1 ,yn1 ,an1 ,bn1 )
E (6.47)

= ∥Φ(r−i,x,y)∥
−2
∑
xn1 y

n
1

∑
an1 ∣aiaC
bn1 ∣bibC

PXn
1 Y

n
1 ∣Ω−iXiYi(x

n
1 , y

n
1 ∣ω−i, x, y)PAn1Bn1 ∣Xn

1 Y
n
1
(an1 , b

n
1 ∣x

n
1 , y

n
1 )ρ

(xn1 ,yn1 ,an1 ,bn1 )
E

(6.48)

= ∥Φ(r−i,x,y)∥
−2
∑
xn1 y

n
1

∑
an1 ∣aiaC
bn1 ∣bibC

PXn
1 Y

n
1 A

n
1B

n
1 ∣Ω−iXiYi(x

n
1 , y

n
1 , a

n
1 , b

n
1 ∣ω−i, x, y)ρ

(xn1 ,yn1 ,an1 ,bn1 )
E (6.49)

= ∥Φ(r−i,x,y)∥
−2
PACBCAiBi∣Ω−iXiYi(aC , bC , ai, bi∣ω−i, x, y)

∑
xn1 y

n
1

∑
an1 ∣aiaC
bn1 ∣bibC

PXn
1 Y

n
1 A

n
1B

n
1 ∣Ω−iXiYiACBCAiBi(x

n
1 , y

n
1 , a

n
1 , b

n
1 ∣ω−i, x, y, aC , bC , ai, bi)ρ

(xn1 ,yn1 ,an1 ,bn1 )
E

(6.50)

= ∥Φ(r−i,x,y)∥
−2
PACBCAiBi∣Ω−iXiYi(aC , bC , ai, bi∣ω−i, x, y) E

xn1 ,y
n
1 ,a

n
1 ,b

n
1 ∣r−i,x,y,ai,bi

[ρ
(xn1 ,yn1 ,an1 ,bn1 )
E ]

(6.51)

= PACBC ∣Ω−iXiYi(aC , bC ∣ω−i, x, y)
−1PACBCAiBi∣Ω−iXiYi(aC , bC , ai, bi∣ω−i, x, y)ρ

(r−i,x,y,a,b)
E (6.52)

= PAiBi∣R−iXY (a,b∣r−ix, y)ρ
(r−i,x,y,a,b)
E (6.53)

where we have used the fact that PXn
1 Y

n
1 ∣Ω−i,Xi,Yi = PXn

1 ∣Ω−i,XiPY n1 ∣Ω−i,Yi in Eq. 6.46 and the fact
that given the questions the answers do not depend on Ω−i in Eq. 6.49. �

Define the auxiliary state θ(0) as

θ
(0)
R−iXiYiEAEBE

∶= ∑
r−i,x,y

PR−i(r−i)PXY (x,y)Jr−i, x, yK⊗ Φ̃(r−i,x,y)
EAEBE

. (6.54)
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One can view this as the state produced when r−i is sampled according to PR−i , x,y are
sampled according to the question distribution PXY and the state Φ̃(r−i,x,y)

EAEBE
is distributed

between Alice, Bob and Eve. We also define θ to be the state produced when Alice and Bob
use the measurements Âr−i,x and B̂r−i,y to measure θ(0)

θR−iXiYiAiBiE

∶= ∑
r−i,x,y

PR−i(r−i)PXY (x,y)Jr−i,x, yK⊗∑
a,b

Ja, bK⊗ trEAEB (Âr−i,x(a) ⊗ B̂r−i,y(b)Φ̃
(r−i,x,y)
EAEBE

)

(6.55)

= ∑
r−i,x,y

PR−i(r−i)PXY (x,y)Jr−i,x, yK⊗∑
a,b

PAiBi∣R−iXiYi(a,b∣r−i, x, y)Ja, bK⊗ ρ
(r−i,x,y,a,b)
E . (6.56)

We will show that θ is close to both the simulated state and the real state. Using the
triangle inequality, this will imply that the simulated state is also close to the real state.

Similar to θ(0) above, we also define the state σ(0) after Step 3b in Box 6.1 (conditioned
on I = i) as

σ
(0)
R−iXiYiEAEBE

∶= ∑
r−i,x,y

PR−i(r−i)PXY (x,y)Jr−i, x, yK⊗ (UEA
r−i,x

⊗ V EB
r−i,y

) Φ̃(r−i,⊥,⊥)
EAEBE

(UEA†
r−i,x

⊗ V EB†
r−i,y

) .

(6.57)

The simulated state σR−iXiYiAiBiE for I = i is simply the state obtained when σ(0) is measured
using the measurements Âr−ix and B̂r−iy.

Using Proposition 6.4, it is straightforward to show that for a random i ∈ Cc, θ and σ are
close to each other. The following lemma is essentially a generalisation of [BVY21, Claim
6.4].

Lemma 6.7. For the state θ defined in Eq. 6.55 and the simulated state σ (conditioned on
I = i), we have that

E
I
∥θR−iXiYiAiBiE − σR−iXiYiAiBiE∥1 ≤ O(δ1/16/α3)

where I is uniformly distributed at random in Cc.

Proof. We have that

E
I
∥θR−iXiYiAiBiE − σR−iXiYiAiBiE∥1 ≤ E

I
∥θ

(0)
R−iXiYiEAEBE

− σ
(0)
R−iXiYiEAEBE

∥1

= E
I
E
R−i

E
XY

[∥Φ̃(r−i,x,y)
EAEBE

− (UEA
r−i,x

⊗ V EB
r−i,y

) Φ̃(r−i,⊥,⊥)
EAEBE

(UEA†
r−i,x

⊗ V EB†
r−i,y

) ∥1]

≤ O(δ1/16/α3)
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where the first line follows from the data processing inequality for norms, and the last line
follows from Proposition 6.4 and the fact that ∥ψ − φ∥1 ≤

√
2 ∥∣ψ⟩ − ∣φ⟩∥ for all pure states ψ

and φ. �

Real state of the protocol ρ conditioned on Ij = i can be written as

ρR−iXiYiAiBiE = ∑
r−i

PR−i(r−i)Jr−iK⊗∑
x,y

PXiYi∣R−i(x, y∣r−i)Jx, yK

⊗∑
a,b

PAiBi∣R−iXiYi(a,b∣r−i,x,y)Ja, bK⊗ ρ
(r−i,x,y,a,b)
E . (6.58)

Lemma 6.8. The real state of the protocol ρ (conditioned on Ij = i) and the auxiliary state
θ satisfy

E
I
∥θR−iXiYiAiBiE − ρR−iXiYiAiBiE∥1 ≤ O(δ1/2/α2)

where I is uniformly distributed at random in Cc.

Proof.

E
I
[∥θR−iXiYiAiBiE − ρR−iXiYiAiBiE∥1]

= E
I
[∥ ∑

r−i,x,y

PR−i(r−i)PXY (x, y)Jr−i, x, yK⊗ ρ
(r−i,x,y)
AiBiE

− ∑
r−i,x,y

PR−iXY (r−i, x, y)Jr−i, x, yK⊗ ρ
(r−i,x,y)
AiBiE

∥
1
]

= E
I
[∥PR−iPXY − PR−iXiYi∥1]

≤ O(δ1/2/α2),

where the last line follows from the equation after Eq. 88 in [BVY21] (setting WC to be
the trivial event). �

Lemma 6.9. The state σ produced by the single-round protocol for the 3CHSH⊥ game in
Box 6.1 approximates the state ρ. Specifically,

∥ρIjR−IjXIjYIjAIjBIjE − σIR−IXIYIAIBIE∥1
= O(δ1/16/α3).

Proof. Using the fact that Ij in ρ is distributed uniformly at random in Cc, and Lemma 6.7
and 6.8, we have

∥ρIjR−IjXIjYIjAIjBIjE − σIR−IXIYIAIBIE∥1
= E

I
∥ρR−iXiYiAiBiE − σR−iXiYiAiBiE∥1

≤ E
I
∥θR−iXiYiAiBiE − ρR−iXiYiAiBiE∥1 +E

I
∥θR−iXiYiAiBiE − σR−iXiYiAiBiE∥1

≤ O(δ1/16/α3)
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where EI represents expectation over I, which is sampled uniformly at random from Cc. �

Step 3: Bounding H(AIj ∣EIjR−IjXIj)ρ using the single-round entropy bound

Using Lemma 6.9 above, we show that the single-round strategy in Box 6.1 has a large
winning probability if ρ has a large average winning probability. This will be helpful for
bounding the entropy of the answers of the game given Eve’s register while using the
single-round bound in Lemma 6.3.

Let Wi denote the indicator random variable for the event that game Gi is won by the
players. Since, Wi is a deterministic function of Xi, Yi,Ai,Bi we have

∣Pr
ρ
(WIj) −Pr

σ
(WI)∣ ≤ ∥ρIjR−IjXIjYIjAIjBIjWIj

E − σIR−IXIYIAIBIWIE∥1
≤ O (δ1/16/α3) . (6.59)

For the state, ρ, Ij is an index chosen uniformly at random in Cc. Using Eq. 6.26, we have

Pr
ρ
(WIj) ≥ (1 − ε)ωthn − ∣C ∣

n − ∣C ∣

≥ (1 − ε) (ωth − δ) (6.60)

Combining this with Eq. 6.59, we get that

Pr
σ
(WI) ≥ ωth −O (ε + δ1/16/α3) (6.61)

We now bound H(AIj ∣EIjR−IjXIj)ρ using the entropy bound for the single-round 3CHSH⊥
game. To use Lemma 6.3, we first use the Alicki-Fannes-Winter (AFW) continuity bound
for the conditional entropy [AF04,Win16] to lower bound the entropy on ρ with the corre-
sponding entropy on the simulated state σ:

H(AIj ∣EIjR−IjXIj)ρ ≥H(AI ∣EIR−IXI)σ − g(O(δ1/16/α3))

≥ F (gα,ν(Pr
σ
[W ])) − g(O(δ1/16/α3))

≥ F (gα,ν(ωth −O(ε + δ1/16/α3))) −O (
δ1/16

α3 log 1
δ
)

≥ F (gα,ν(ωth)) −O((F ○ gα,ν)
′(ωth)(ε + δ

1/16/α3) −O (
δ1/16

α3 log 1
δ
)

≥ F (gα,ν(ωth)) −O (
ε

ν
+
δ1/16

α3ν
log 1

δ
)

where g(x) = 2x log(∣A∣)+(x+1) log(x+1)−x log(x) = O (x log ∣A∣
x ). We use the single-round

entropy bound (Lemma 6.3) for the 3CHSH⊥ game in the second line. This is valid because
in the simulation of σ, Eve classically distributes I and R−I to the players, so we can
assume that she also holds copies of these registers. (F ○ gα,ν)′ represents the derivative of
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the function F ○ gα,ν with respect to ω. We have used the fact that F ○ gα,ν is convex and
increasing, and the bound (F ○ gα,ν)′(ωth) ≤ O( 1

ν ) above.

Finally, if we plug in the bound above in Eq. 6.30, we get

H(AJ ∣EΩn
1J)ρ ≥

t

∑
k=1

E
ik−1
1

[H(AIk ∣EIkR−IkXIk)ρ]

≥ t ⋅ (F (gα,ν(ωth)) −O (
ε

ν
+
δ1/16

α3ν
log 1

δ
)) (6.62)

6.6.2. Bounding information reconciliation cost

To take the information reconciliation cost into account, we consider the quantity
H(AJ ∣BJJ)ρhonest for the honest protocol (with no Eve) under noisy conditions. We model
the noise between Alice and Bob as a depolarising channel with noise parameter 2Q. If Alice
sends one half of a perfect Bell state to Bob for each round in the honest protocol, then their
shared state is η⊗nEAEB where

ηEAEB = (1 − 2Q) ∣Φ+⟩ ⟨Φ+∣ + 2QτEAEB (6.63)

where ∣Φ+⟩ is a Bell state and τEAEB is the completely mixed state. The noise parameter, Q
can be measured using the qubit error rate through the equation [AF20, Section 4.2.4]

Pr[A ≠ B∣X,Y = (0,2)] = Q. (6.64)

We will assume that Q ≤ 0.1. With probability at least (1 − α)2(1 − ν)(1 − Q), Alice and
Bob’s answers are equal in every round. Since the shared state is i.i.d, we can simply bound
the entropy as

H(AJ ∣BJJ)ρhonest = t ⋅H(A∣B)η

≤ t ⋅ h(1 − (1 − α)2(1 − ν)(1 −Q))

≤ t ⋅ h(2α + ν +Q)

where the last line is true for α, ν,Q ∈ (0,0.1).

6.6.3. Bounding key length

We can now estimate the length of the key produced during the parallel DIQKD protocol
as:

H(AJ ∣EJΩn
1)ρ −H(AJ ∣BJJ)ρhonest

≥ t(F (gα,ν(ωth)) −O (
ε

ν
+
δ1/16

α3ν
log 1

δ
) − h(2α + ν +Q))
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where t = δ
log ∣A∣∣B∣+δn = Ω(n). Note that we can choose ωth close to the maximum probability

of winning so that F ○ gα,ν(ωth) is at least some constant, say 1
2 log(2). α, ν and Q can be

chosen close to zero so that the information reconciliation term is small. Finally, with these
parameters fixed, we can choose δ small enough so that the key length is Ω(n) and the key
rate is positive. This completes the proxy von Neumann entropy based security proof.

6.7. Security proof
The von Neumann entropy based security argument illuminates the fundamental

mechanism behind entropy accumulation in parallel DIQKD. It demonstrates that Alice’s
answers AJ are random with respect to the adversary Eve because, for every k ∈ [t], one can
approximate the questions and answers in the partial state ρIjR−IjXIjYIjAIjBIjE as the output
of a single-round strategy for the 3CHSH⊥ game, which has a high winning probability.
Now, we need to port the lower bound on the von Neumann entropy of Alice’s answers
to a smooth min-entropy lower bound. To chart the course forward, we can compare this
situation with sequential DIQKD, where Alice’s answers in each round directly result from
a single-round strategy. This direct relationship ensures their randomness according to
the single-round entropy bound. Consequently, when the average winning probability is
high, entropy accumulates across all rounds. The entropy accumulation theorem (EAT)
(Sec. 2.6) serves as the primary information-theoretic tool for demonstrating this accumu-
lation [AFDF+18,AFRV19]. We sketched the security proof for sequential DIQKD in
Sec. 2.8.3.

To prove security for the parallel DIQKD protocol, we require a tool analogous to EAT.
Drawing insights from the von Neumann entropy based argument, we can identify key
features necessary for such a tool. The most crucial distinction between the setting for
EAT (Fig. 2.1) and the state ρ produced in parallel DIQKD is the absence of a sequential
or structured process generating the answers in ρ. Instead, Alice and Bob produce answers
in parallel using a single measurement channel. The primary source of structure, and the
reason for expecting entropy accumulation, lies in our ability to approximate Alice and
Bob’s questions and answers on round Ik along with Eve’s information using the output
of a single-round strategy. Consequently, the entropic tool we employ should not rely on
a sequential structure for the state. Rather, it should demonstrate entropy accumulation
when the partial state of the given state can be approximated as the output of a suitable
channel. These requirements are all addressed by the unstructured approximate entropy
accumulation theorem (Theorem 5.8 and 5.10) developed in the previous chapter.
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Note that we cannot use Theorem 3.12 here. Unlike the unstructured approximate
EAT, this theorem applies only to sequential processes. Moreover, it considers much
stricter channel approximations to the channelsMk forming this process. The unstructured
approximate EAT’s relaxed assumptions come with an inherent limitation: the smoothing
parameter must depend on the approximation parameter. Nevertheless, in our security proof
for parallel DIQKD, this limitation is not significant since we can choose the approximation
parameter using the protocol parameter δ.

In the following section, we apply Theorem 5.10 to prove security for parallel DIQKD in
the one-shot regime.

6.7.1. Using unstructured approximate EAT for the smooth min-
entropy bound

In order to prove security for Protocol 6.1, we need to bound the smooth min-entropy of
Alice’s raw key with respect to Eve’s information, that is, we need to lower bound

Hε
min(AJ ∣EΩn

1JT
t
1XSAS)ρ∣¬F . (6.65)

Recall that J = {I1, I2,⋯, It}. For simplicity, for a sequence of variables V n
1 (like Xn

1 , An1
etc.) and j ∈ [t], we define the variable

V̂j ∶= VIj . (6.66)

For example the entropy above in Eq. 6.65 can be written as Hε
min(Â

t
1∣EΩn

1I
t
1T

t
1XSAS)ρ∣¬F .

We will begin by using the unstructured approximate EAT to prove that

Hε
min(Â

t
1B̂

t
1∣X̂

t
1Ŷ

t
1T

t
1I

t
1EΩJc)ρ∣¬F ≥ Ω(t). (6.67)

Through a minor modification of the simulation in Box 6.1, we will show that the states
ρÂj1B̂

j
1X̂

j
1 Ŷ

j
1 T

j
1 I
t
1EΩJc can be approximated by states, which are produced by playing a single-

round 3CHSH⊥ game. This modified simulation is presented in Box 6.2. Let σ(j) denote the
state produced by this simulation.

Claim 6.10. For every j ∈ [t], the state σ(j) produced through Box 6.2 satisfies

∥ρÂj1B̂
j
1X̂

j
1 Ŷ

j
1 T

j
1 I
t
1EΩJc − σ

(j)
Âj1B̂

j
1X̂

j
1T

j
1 Ŷ

j
1 I

t
1EΩJc

∥
1
≤ O (

δ1/16

α3 ) . (6.68)

Proof. In the first step of Box 6.2, condition on the choice of the indices Ij−1
1 = ij−1

1 . This fixes
the subset C ⊆ J . For this choice of C, consider the state σ(j)

IjR−IjXIjYIjAIjBIjE∣C=ij−1
1

produced
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Single-round protocol for producing σ
(j)
Âj1B̂

j
1X̂

j
1 Ŷ

j
1 I

t
1T

j
1EΩJc

:

(1) Eve randomly samples J ∶= {I1, I2,⋯, It} ⊆ [n] of size t. Define C ∶= Ij−1
1 . She

also samples T j−1
1 i.i.d. from {0,1} with Pr(Ti = 1) = γ.

(2) Eve randomly samples the random variable R−Ij = (AC ,BC ,XC , YC ,Ω(C∪{i})c) =

(Âj−1
1 , B̂j−1

1 , X̂j−1
1 , Ŷ j−1

1 ,ΩJc , Ω̂t
j+1) according to PR−Ij depending on the value of

Ij.
(3) Eve distributes C,Ij,R−Ij to both Alice and Bob. Call their copies C(A),I

(A)
j ,R

(A)
−Ij

and C(B),I
(B)
j ,R

(B)
−Ij .

(4) Let Ij = i and R−Ij = r−i. Eve distributes the registers EA and EB of the state
∣Φ̃(r−i,⊥,⊥)⟩EAEBE between Alice and Bob.

(5) Alice and Bob play the 3CHSH⊥ (EAT map):
(a) The questions x and y are sampled according to PXY and sent to Alice and

Bob.
(b) Let UEA

r−i,x and V EB
r−i,y be the unitaries defined by Proposition 6.4. Alice

applies the unitary Ur−i,x to her register EA. Similarly, Bob applies Vr−i,y
to his register EB.

(c) Alice and Bob measure their registers with {Âr−i,x(a)}a and {B̂r−i,y(b)}b to
generate their answers for the game.

(d) Alice randomly samples Tj ∈ {0,1} with Pr(Tj = 1) = γ.
(6) Eve traces over Ω̂t

j+1 in her R−Ij .

Box 6.2

by the process in Box 6.2 before Step 6 (ignoring I tj+1 and T j1 for now). Observe that this
state is identical to the state produced using the simulation in Box 6.1 for the fixed subset
C. Using Lemma 6.9, we have that

∥ρIjR−IjXIjYIjAIjBIjE∣C=ij−1
1

− σ
(j)
IjR−IjXIjYIjAIjBIjE∣C=ij−1

1
∥

1
≤ O (

δ1/16

α3 ) . (6.69)

Now, in the real protocol the subset C = Ij−1
1 is distributed as a random j − 1 size subset

of [n]. This is exactly how Ij−1
1 are also distributed in the simulation protocol in Box 6.2.

Therefore, we have

∥ρIj1R−IjXIjYIjAIjBIjE
− σ

(j)
Ij1R−IjXIjYIjAIjBIjE

∥
1
≤ O (

δ1/16

α3 ) . (6.70)

We also need to incorporate I tj+1 in the inequality above. Let Φ ∶ Ij1 → I t1 be the map which
simply reads Ij1 and randomly samples I tj outside this set in [n]. This channel produces the
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correct distribution on I t1 when applied to both ρIj1 and σ(j)
Ij1

. Further, observe that both ρ
and σ(j) satisfy the Markov chains I tj+1 ↔ Ij1 ↔ R−IjXIjYIjAIjBIjE. Therefore, using the
data processing inequality for the trace norm we have

∥ρIt1R−IjXIjYIjAIjBIjE − σ
(j)
It1R−IjXIjYIjAIjBIjE

∥
1

= ∥Φ(ρIj1R−IjXIjYIjAIjBIjE
) −Φ(σ

(j)
Ij1R−IjXIjYIjAIjBIjE

)∥
1

≤ O (
δ1/16

α3 ) . (6.71)

We can now also consider the last step in Box 6.2 by tracing over Ω̂t
j+1. This gives us

∥ρIt1X̂
j
1 Ŷ

j
1 Â

j
1B̂

j
1ΩJcE − σ

(j)
It1X̂

j
1 Ŷ

j
1 Â

j
1B̂

j
1ΩJcE

∥
1
≤ O (

δ1/16

α3 ) . (6.72)

Lastly, we also need to account for T j1 . These are sampled independently in both ρ and σ(j)

with the same distribution. Hence, we can account for these simply and the claim follows
from the bound above. �

We will now apply Theorem 5.10 to the state ρ. The approximation chain given by the
simulation procedure in Box 6.2 is useful for this purpose. For j ∈ [t], let’s define

Ẽ
(j)
A ∶= EAI

(A)
j C(A)R

(A)
−Ij and Ẽ(j)

B ∶= EBI
(B)
j C(B)R

(B)
−Ij (6.73)

in Box 6.2 to be the entirety of Alice and Bob’s registers before they start playing the 3CHSH⊥
game in Step 5 of Box 6.2. LetMj ∶ Ẽ

(j)
A Ẽ

(j)
B → X̂jŶjTjÂjB̂j be the channel applied by Alice

and Bob in Step 5. This channel samples the questions X̂j and Ŷj for the 3CHSH⊥ game,
applies Alice and Bob’s measurements on Ẽ(j)

A and Ẽ(j)
B to produce their answers and also

randomly samples Tj. Note that the Steps 5 and 6 commute, so we can change their order
without affecting Claim 6.10. For the following assume that Eve performs Step 6 before
Alice and Bob play the game (Step 5). Finally, let the state σ(j,0)

Âj−1
1 B̂j−1

1 X̂j−1
1 Ŷ j−1

1 T j−1
1 It1Ẽ

(j)
A Ẽ

(j)
B EΩJc

be the state between Alice, Bob and Eve before the 3CHSH⊥ game is played. With these
definitions, we have that for every j ∈ [t]

σ
(j)
Âj1B̂

j
1X̂

j
1 Ŷ

j
1 T

j
1 I
t
1EΩJc

=Mj (σ
(j,0)
Âj−1

1 B̂j−1
1 X̂j−1

1 Ŷ j−1
1 T j−1

1 It1Ẽ
(j)
A Ẽ

(j)
B EΩJc

) . (6.74)

Using Claim 6.10 we further have that for every j ∈ [t]

1
2 ∥ρÂj1B̂

j
1X̂

j
1 Ŷ

j
1 T

j
1 I
t
1EΩJc − σ

(j)
Âj1B̂

j
1X̂

j
1 Ŷ

j
1 T

j
1 I
t
1EΩJc

∥
1
≤ ε (6.75)
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for ε = O ( δ
1/16

α3 ). We choose the testing maps Tj ∶ X̂jŶjTjÂjB̂j → X̂jŶjTjÂjB̂jWj to be the
classical channel which outputs the register Wj according to

Wj =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

V (X̂j, Ŷj,Âj, B̂j) if Tj = 1

⊥ if Tj = 0
(6.76)

We make the following choices in order to use Theorem 5.10,

Aj ← ÂjB̂j (6.77)

Bj ← X̂jŶjTj (6.78)

Xj ←Wj (6.79)

E ← EI t1ΩJc . (6.80)

Note that the side information X̂jŶjTj is sampled independent of the input state by the
channel Mj. Lastly, we will condition on the event ¬F , which is equivalent to the event
freq(W t

1)(1) ≥ γωth.

We will use Lemma 6.3 to define an affine min-tradeoff function for the channels {Mj}tj=1.
Fix j ∈ [t]. For an arbitrary state ν(0)

Ẽ
(j)
A Ẽ

(j)
B R

, the state νX̂j ŶjTjÂjB̂jWjR̃
= Tj ○Mj (ν(0)) satisfies

νTj = γ ∣1⟩ ⟨1∣ + (1 − γ) ∣0⟩ ⟨0∣ . (6.81)

Further, we can write the output state ν on register Wj as

νWj
= γ(1 − ω) ∣0⟩ ⟨0∣ + γω ∣1⟩ ⟨1∣ + (1 − γ) ∣⊥⟩ ⟨⊥∣ (6.82)

for some ω ∈ [0,1]. Observe that ω here is actually the winning probability of the 3CHSH⊥
game for the strategy given by the initial state ν(0) and the measurements that comprise the
channelMj. Let’s define the function Fα,ν piecewise as

Fα,ν(x) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(1 − α)F (gα,ν (
x
γ)) if x

γ ∈ [ωmin, ωmax]

0 else
(6.83)

where ωmin ∶= 1 − (1−α)2ν
4 , ωmax ∶= 1 − 2−

√
2

4 (1 −α)2ν, and the functions F and gα,ν are defined
in Eq. 6.3. Using Lemma 6.3 for the state ν, we have

H(AB∣EXY )ν ≥ Fα,ν (νWj
(1)) (6.84)

We can transform this lower bound into an affine function by using the fact that Fα,ν is
convex and that a convex function lies above its slope. We consider the slope at point γωth.
For 0 ≤ x ≤ γωmax, we have

Fα,ν(x) ≥ Fα,ν(γωth) + F
′
α,ν(γωth) (x − γωth) (6.85)
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=∶ F̄α,ν (x) . (6.86)

We have defined the right-hand side above as the linear function F̄α,ν . Note that Eq. 6.82
implies that irrespective of the input state ν(0), νWj

(⊥) = 1 − γ. So, for any probability
distribution qWk

such that q(⊥) ≠ 1 − γ, we have that Σ(q∣Mj) = ∅ (Eq. 5.101). This is
also true for any distribution q such that q(1)/γ > ωmax, which is the maximum winning
probability for the 3CHSH⊥ game. As a result, for the distribution qWj

, the function
q ↦ F̄α,ν(q(1)) is a min-tradeoff function for the channels {Mj}tj=1.

One can easily evaluate the derivative of Fα,ν :

F ′
α,ν(ωth) =

1
νγ(1 − α)F

′(gα,ν(ωth)) ≤ O (
1
νγ

) (6.87)

This gives us that ∥∇F̄α,ν∥∞ ≤ O ( 1
νγ), which is required while applying Theorem 5.10.

Finally, applying the approximate EAT to the state ρ as described above, we get that if
Pr(¬F ) ≥ 2µ(3), then

Hµ′+ε′
min (Ât1B̂

t
1∣X̂

t
1Ŷ

t
1T

t
1I

t
1ΩJcE)ρ∣¬F ≥ t((1 − α)F (gα,ν(ωth)) −O (

√
µ

νγ
)) −O(1) (6.88)

where

δ ∈ (0,1) (6.89)

t =
δ

log ∣A∣∣B∣ + δ
n (6.90)

ε = O (
δ1/16

α3 ) (6.91)

µ ∶= (4(4
√
ε + ε) log ∣A∣∣B∣∣X ∣∣Y∣∣∣T ∣

ε
)

1/3
= O (ε1/6 (log 1

ε
)

1/3
) (6.92)

µ′ ∶= 2
√

µ

Prρ(¬F )
= O (ε1/12 (log 1

ε
)

1/6
) (6.93)

and ε′ = Ω(1) ∈ (0,1) such that µ′ + ε′ < 1.

In Appendix D.3, using standard techniques, we derive a bound for the entropy of Alice’s
raw key with respect to Eve’s information, HO(µ′)

min (Ât1∣T
t
1I

t
1Ωn

1EXSAS)ρ∣¬F from the bound
above. We use the fact that if the 3CHSH⊥ games are won with a high probability, then
Alice’s and Bob’s answers have a small relative distance. Consequently, Alice’s answers alone
possess high entropy relative to Eve’s information. We account for the information disclosed

(3)If Pr(¬F ) < 2µ, then one can show that the secrecy condition for QKD is satisfied for a security
parameter greater than 2µ (Eq. 2.60)
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during the testing procedure, XS and AS, by applying a straightforward dimension bound.
Through these arguments, we prove that:

Hµ′+8ε′
min (AJ ∣JT

t
1Ωn

1EXSAS)ρ∣¬F − leakIR

≥ t((1 − α)F (gα,ν(ωth)) −O (

√
µ

νγ
) − 2h(2(ν + α + δ1)) − 2 log ∣A∣γ) −O(1) (6.94)

where leakIR is the information reconciliation cost, δ1 ∈ (0,1) is a small parameter and the
rest of the parameters are defined and chosen as in Eq. 6.93.

We can make the lower bound above at least ≿ t log(2)
2 by choosing ωth such that

gα,ν(ωth) ≈ 0.84 (the winning probability of the CHSH games). This choice results in
F (gα,ν(ωth)) ≥ 3 log(2)

4 . Note that this winning probability threshold is sufficiently below
the maximal winning probability to allow for a robust implementation that accounts for
experimental imperfections. We can further choose α = γ = ν = δ1 = 10−3. With these
choices, the combined terms αF (gα,ν(ωth)) + 2h(2(ν + α + δ)) + 2γ log ∣A∣ sum together less
than 0.1 log(2). By choosing δ small enough, the term O (

√
µ

νγ ) can be made smaller than
0.1 log(2) and the security parameter µ′ can also be made small enough. Once we fix a value
of δ, we obtain a fixed small key rate (≥ δ log(2)

2(log ∣A∣∣B∣+δ) in this example) for a fixed security
parameter given by the corresponding value of µ′. It is important to note that one limitation
of our approach is the interdependence of the key rate and the security parameter. We have
essentially proven that the protocol is Õ(εs) secure for a rate Ω(ε192

s ). Consequently, if one
wishes to make the security parameter smaller, they must also reduce the key rate.

6.8. Conclusion
In this work, we have developed an alternative approach to proving the security of

parallel DIQKD. This approach is based on using results from the work on parallel repetition
for anchored games to break the multi-round parallel strategy used by Alice and Bob’s
quantum devices into multiple approximately single-round strategies. We can then prove
that entropy accumulates in this protocol using the unstructured approximate EAT. Our
approach yields a more information theoretic and general proof compared to those presented
by [JMS20] and [Vid17].

However, a major drawback of our technique is that it couples the key rate of the
protocol with the security parameter. The most important and immediate problem arising
from this work is whether this dependence can be broken. We expect that it might be
possible to use stronger properties of testing in the unstructured approximate EAT to break
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this relation. We believe that efforts to enhance the performance of our entropic method to
match and potentially surpass that of [JMS20] and [Vid17] could reveal deeper insights
about approximation chains. Furthermore, it would also be interesting to explore whether
the results and techniques employed in this chapter have implications in the broader context
of parallel repetition.

At a broader level, whether we can improve the rates of parallel DIQKD to match those
of its sequential counterpart still remains an open problem. Given the complexity inherent
to general non-local game and their parallel repetitions, it seems unlikely that one can match
the performance of sequential DIQKD without relying on specific properties of the underlying
games. A promising direction could be to select or engineer these games such that the parallel
key rates approach those of sequential DIQKD. For example, certain games like XOR game
satisfy strong parallel repetition [CSUU08], that is, the strategy of playing each game in
the parallel repetition independently using the optimal strategy yields the optimal winning
probability. It’s conceivable that for a similar class of games, Eve’s optimal attack in parallel
DIQKD might be constrained to be i.i.d. or close to it. Finally, we note that proving the
security of parallel device-independent randomness expansion still remains an interesting
open problem.
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Chapter 7

Exploring further. . .

In each of the chapters, we have discussed the immediate questions and research directions
emerging from the work presented. In this chapter, we broaden our focus to explore
approximation chains in the wider field of quantum information and how our work may
impact their analysis.

(1) Imperfections and leakage in cryptographic protocols: Incorporating
imperfections and leakages into security proofs is crucial for analysing real-world
implementations of quantum cryptographic protocols. We previously highlighted
this while motivating the development of the first approximate entropy accumulation
theorem in Chapter 3. The unstructured approximate EAT presented in Chapter 5
may prove more suitable for analysing imperfections, provided one can utilise
additional testing to decouple the smoothing parameter from the approximation
parameter in this theorem. Exploring the application of these theorems to prove
the security of cryptographic protocols under imperfections and leakages represents
a promising line of research. Furthermore, it would be valuable to understand the
tradeoffs and assumptions required for such proofs in comparison to other recently
developed tools for similar tasks [Tan23,AMT24].

(2) Parallel repetition based proofs: The arguments and techniques de-
veloped for analysing parallel repetition and decomposing parallel proto-
cols [Raz98,Hol09,BVY22] are incredibly strong and general. In this thesis,
we use them for proving the security of parallel DIQKD. Additionally, variants of
these arguments have been successfully used to establish direct product results in
communication complexity [JPY12,BRWY13,JK21,JK23]. We have also been
able to leverage the parallel repetition argument to provide an alternative proof for



the strong converse of classical channel capacity [MD24d]. The general quantum
problems for both these tasks remains an open problem.

Given the generality of parallel repetition techniques, we expect these to serve
as important tools for tackling such problems. As we saw in Chapter 6, one
of the main components of these arguments is the development of a structured
approximation chain, which is easy to manipulate. We anticipate that the tools
developed in this thesis will facilitate the application of these techniques in the future.

(3) Fault-tolerant channel coding: This direction once again explores protocol
performance under error conditions. While calculating the communication capacities
for quantum channels, the quantum gates implementing encoders and decoders
are assumed to be noiseless. However, this is an unrealistic assumption, especially
for near term quantum devices. Research on fault-tolerant channel coding aims
to use fault-tolerant computation techniques developed for quantum computing to
communicate information over quantum channels with noisy local quantum gates,
achieving rates close to the capacities with noiseless gates [CMH24,BCMH24].

The techniques for analysing approximation chains might prove useful for these
problems as well. Under certain conditions, it may be possible to view the states
produced by the encoders in these problems as an approximation chain (or a similar
construct) of the perfectly encoded state. For instance, consider a scenario where
the encoder produces a state on registers Xn

1 , and on each register Xk, the state
produced is almost perfect. In this case, it might be possible to demonstrate that the
information-theoretic distance between the real and ideal state is ∼ nε. Then, the
entropic triangle inequality could be used to prove that the decrease in the amount
of information communicated with the real states is also ∼ nε, which would further
imply that the rate decreases by ∼ ε.

(4) Analysing infinite-dimensional protocols: Cryptographic and communication
protocols are often implemented using optical signals, which are represented by
infinite-dimensional Hilbert spaces. A common strategy for reducing the analysis
of such protocols to the finite-dimensional case involves using a large projector to
project the signal onto a finite-dimensional space (see, for example, [KGL+23]).
However, if there are n signals communicated during the protocol and the truncation
causes a deviation of ε from the real protocol for each signal, then the protocol with
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the truncated signals will be nε far from the original implementation. Similar to the
problems addressed in this thesis, it is generally preferable to treat such a linearly
growing term as an information or entropy loss rather than see it added to the proto-
col error. It is seems that such an analysis can be modelled using an approximation
chain, and that the techniques presented in this thesis would be beneficial in these
contexts as well.
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Appendix A

Appendices for Chapter 3

A.1. Entropic triangle inequalities cannot be improved
much

In this section, we will construct a classical counterexample to show that it is not possible
to improve Lemma 3.5 to get a result like

Hε′

min(A∣B)ρ ≥H
ε
min(A∣B)η −O(Dε′′

max(ρ∣∣η)) (A.1)

where ε, ε′ > 0 and the constant in front of Dε′′
max(ρ∣∣η) is independent of the dimensions ∣A∣

and ∣B∣.

Consider the probability distribution pAB where B is chosen to be equal to 1 with prob-
ability 1 − ε and 0 with probability ε, and A is chosen to be a random n-bit string if B = 1
otherwise A is chosen to be the all 0 string. Let E be the event that B = 0. Then, we have

pAB∣E ≤
1

p(E)
pAB =

1
ε
pAB

or equivalently Dmax(pAB∣E ∣∣pAB) ≤ log 1
ε . In this case, we have Hε

min(A∣B)p = n log(2) (where
we are smoothing in the trace distance) and Hε′

min(A∣B)p∣E = log 1
1−ε′ = O(1) (independent of

n). If Eq. A.1, were true then we would have

n log(2) −O (log 1
ε
) ≤Hε

min(A∣B)P −O(Dε′′

max(pAB∣E ∣∣pAB))

≤Hε′

min(A∣B)p∣E = O(1)

which would lead to a contradiction because n is a free parameter, and we can let n→∞.



The same example can be used to show that it is not possible to improve Corollary 3.7
to an equation of the form

H(A∣B)ρ ≥H(A∣B)η −O(D(ρ∣∣η)).

For ρ = P∣E and η = P , such a bound would imply that

0 ≥ (1 − ε)n log(2) − log 1
ε

which is not true for large n.

A.2. Bounds for D#
α of the form in Lemma 3.14 neces-

sarily diverge in the limit α = 1
Classically, we have the following bound for Rényi entropies.

Lemma A.1. Suppose ε ∈ (0,1], d ≥ ε1/2, and p and q are two distributions over an alphabet
X such that 1

2 ∥p − q∥1 ≤ ε and Dmax(p∣∣q) ≤ d < ∞, for α > 1 we have

Dα(p∣∣q) ≤
1

α − 1 log ((1 +
√
ε)α−1(1 − 2

√
ε) + ed(α−1)+1√ε) . (A.2)

In the limit, α → 1, we get the bound

D(p∣∣q) ≤ (1 − 2
√
ε) log(1 +

√
ε) + 2

√
εd. (A.3)

Proof. Classically, we have that the set S ∶= {x ∈ X ∶ p(x) ≤ (1 +
√
ε)q(x)} is such that

p(S) ≥ 1 − 2
√
ε using Lemma 3.8. Thus, for α > 1 we have

∑
x∈X

p(x)(
p(x)

q(x)
)

α−1

= ∑
x∈S

p(x)(
p(x)

q(x)
)

α−1

+ ∑
x/∈S

p(x)(
p(x)

q(x)
)

α−1

≤ ∑
x∈S

(1 +
√
ε)α−1p(x) + ∑

x/∈S
ed(α−1)p(x)

= (1 +
√
ε)α−1p(S) + ed(α−1)p(Sc)

≤ (1 +
√
ε)α−1(1 − 2

√
ε) + ed(α−1)+1√ε

where in the second line we used the definition of set S and the fact that Dmax(p∣∣q) ≤ d, in
the last line we use the fact that since d ≥

√
ε ≥ log(1 +

√
ε), the convex sum is maximised

for the largest possible value of p(Sc), which is 2
√
ε. The bound now follows. �

We observed in Sec. 3.4.2 that the bound in Lemma 3.14 for D#
α tends to ∞

as α → 1 for a fixed ε > 0. One may wonder if a bound like Eq. A.3 exists for
limα→1D

#
α (ρ∣∣σ) = D̂(ρ∣∣σ) [BSD21]. We show in the following that such a bound is not

possible.
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Suppose, that for all ε ∈ [0,a) (a small neighborhood of 0), 1 ≤ d < ∞, states ρ and σ,
which satisfy 1

2 ∥ρ − σ∥1 ≤ ε and ρ ≤ edσ, the following bound holds

D̂(ρ∣∣σ) ≤ f(ε, d) (A.4)

where f(ε, d) is such that limε→0 f(ε, d) = f(0,d) = 0 for every 1 ≤ d < ∞. Note that the upper
bound in Eq. A.3 is of this form. It is known that for pure states ρ, D̂(ρ∣∣σ) = Dmax(ρ∣∣σ).
We will use this to construct a contradiction.

Lemma A.2. (1) For a pure state ρ = ∣ρ⟩ ⟨ρ∣ and a state σ, we have

D̂(ρ∣∣σ) =Dmax(ρ∣∣σ) = ⟨ρ∣σ−1 ∣ρ⟩ .

Proof. First, we can evaluate D̂ as

D̂(ρ∣∣σ) = tr (ρ log (ρ
1
2σ−1ρ

1
2))

= tr (∣ρ⟩ ⟨ρ∣ log (∣ρ⟩ ⟨ρ∣σ−1 ∣ρ⟩ ⟨ρ∣))

= tr (∣ρ⟩ ⟨ρ∣ log(⟨ρ∣σ−1 ∣ρ⟩) ∣ρ⟩ ⟨ρ∣)

= log ⟨ρ∣σ−1 ∣ρ⟩ .

Next, we have that

Dmax(ρ∣∣σ) = log ∥σ−
1
2ρσ−

1
2 ∥

∞

= log ∥σ−
1
2 ∣ρ⟩ ⟨ρ∣σ−

1
2 ∥

∞

= log tr (σ− 1
2 ∣ρ⟩ ⟨ρ∣σ−

1
2)

= log ⟨ρ∣σ−1 ∣ρ⟩ .

�

To obtain a contradiction, let ε ∈ [0, a2). Define the states

ρ ∶= ∣0⟩ ⟨0∣ =
⎛

⎝

1 0
0 0

⎞

⎠

σ′ε ∶= (
√

1 − ε ∣0⟩ +
√
ε ∣1⟩)(

√
1 − ε ∣0⟩ +

√
ε ∣1⟩)†

=
⎛

⎝

1 − ε
√
ε(1 − ε)

√
ε(1 − ε) ε

⎞

⎠

σε ∶= (1 − δ)σ′ε + δρ

(1)This lemma was pointed out to us by Omar Fawzi.

171



=
⎛

⎝

(1 − ε)(1 − δ) + δ (1 − δ)
√
ε(1 − ε)

(1 − δ)
√
ε(1 − ε) (1 − δ)ε

⎞

⎠

where {∣0⟩ , ∣1⟩} is the standard basis and δ ∈ (0,1) is a parameter, which will be chosen later.
Observe that F (ρ, σε) = ⟨e0, σεe0⟩ = 1 − ε(1 − δ), which implies that 1

2 ∥ρ − σε∥1 ≤
√
ε ∈ [0,a).

For these definitions, we have

σ−1
ε =

1
(1 − δ)δε

⎛

⎝

(1 − δ)ε −(1 − δ)
√
ε(1 − ε)

−(1 − δ)
√
ε(1 − ε) (1 − ε)(1 − δ) + δ

⎞

⎠

which implies that D̂(ρ∣∣σε) = log 1
δ using Lemma A.2. We can fix δ = 1

10 . Note that
D̂(ρ∣∣σε) > 0 is independent of ε. Now observe that if the bound in Eq. A.4 were true, then
as ε → 0, D̂(ρ∣∣σε) = log(10) → 0, which leads us to a contradiction. Thus, we cannot have
bounds of the form in Eq. A.4 (also see [BACGPH22]). Consequently, any kind of bound
on D̂α or D#

α which results in a bound of the form in Eq. A.4 as α → 1, for example, the
bound in Eq. A.2, is also not possible at least close to α = 1.

It should be noted that the reason we can have bounds of the form in Lemma 3.14,
despite the fact that no good bound on D̂ = limα→1D

#
α can be produced is thatD#

α , unlike the
conventional generalizations of the Rényi divergence, is not monotone in α [FF21, Remark
3.3](otherwise the above counterexample would also give a no-go argument for D#

α ).

A.3. Transforming lemmas for EAT from H̃↓
α to H̃↑

α

We have to redo the lemmas used in [DFR20] using H̃↑α because we were only able to
prove the dimension bound we need (H̃↑α(A∣BC) ≥ H̃↑α(A∣B) − 2 log ∣C ∣) in terms of H̃↑α

Lemma A.3 ( [DFR20, Lemma 3.1]). For ρA1A2B and σB be states and α ∈ (0,∞), we have
the chain rule

D̃α(ρA1B ∣∣1A1 ⊗σB) − D̃α(ρA1A2B ∣∣1A1A2 ⊗σB) = H̃
↓
α(A2∣A1B)ν (A.5)

where the state νA1A2B is defined as

νA1B ∶=
(ρ

1
2
A1B

σ−α
′

B ρ
1
2
A1B

)
α

tr(ρ
1
2
A1B

σ−α
′

B ρ
1
2
A1B

)
α

νA1A2B ∶= ν
1
2
A1B

ρA2∣A1Bν
1
2
A1B

and α′ ∶= α−1
α .
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Corollary A.4 (Chain rule for H̃↓α [DFR20, Theorem 3.2]). For α ∈ (0,∞), a state ρA1A2B,
we have the chain rule

H̃↓α(A1A2∣B)ρ = H̃
↓
α(A1∣B)ρ + H̃

↓
α(A2∣A1B)ν (A.6)

where the state νA1A2B is defined as

νA1B ∶=
(ρ

1
2
A1B

ρ−α
′

B ρ
1
2
A1B

)
α

tr(ρ
1
2
A1B

ρ−α
′

B ρ
1
2
A1B

)
α

νA1A2B ∶= ν
1
2
A1B

ρA2∣A1Bν
1
2
A1B

and α′ ∶= α−1
α .

We can modify [DFR20, Theorem 3.2], which is in terms of H̃↓α, to the following, which is
a chain rule in terms of H̃↑α. The chain rule in this Corollary was also observed in [DFR20].

Corollary A.5 (Chain rule for H̃↑α). For α ∈ (0,∞), a state ρA1A2B and for any state σB
such that H̃↑α(A1∣B)ρ = −D̃α(ρA1B ∣∣1A1 ⊗σB), we have

H̃↑α(A1A2∣B)ρ ≥ H̃
↑
α(A1∣B)ρ + H̃

↓
α(A2∣A1B)ν (A.7)

where the state νA1A2B is defined as

νA1B ∶=
(ρ

1
2
A1B

σ−α
′

B ρ
1
2
A1B

)
α

tr(ρ
1
2
A1B

σ−α
′

B ρ
1
2
A1B

)
α

νA1A2B ∶= ν
1
2
A1B

ρA2∣A1Bν
1
2
A1B

and α′ ∶= α−1
α . For α ∈ (0,∞), state ρA1A2B and any state σB such that H̃↑α(A1A2∣B)ρ =

−D̃α(ρA1A2B ∣∣1A1A2 ⊗σB), we have

H̃↑α(A1A2∣B)ρ ≤ H̃
↑
α(A1∣B)ρ + H̃

↓
α(A2∣A1B)ν (A.8)

where the state νA1A2B is defined the same as above.

Proof. Let σB be a state such that H̃↑α(A1∣B)ρ = −D̃α(ρA1B ∣∣1⊗σB). Then, using Lemma A.3,
we have

H̃↑α(A1A2∣B)ρ ≥ −D̃α(ρA1A2B ∣∣1A1A2 ⊗σB)

= −D̃α(ρA1B ∣∣1A1 ⊗σB) + H̃
↓
α(A2∣A1B)ν

= H̃↑α(A1∣B)ρ + H̃
↓
α(A2∣A1B)ν
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for νA1A2B defined as in the lemma. Similarly, if H̃↑α(A1A2∣B)ρ = −D̃α(ρA1A2B ∣∣1A1A2 ⊗σB),
then

H̃↑α(A1A2∣B)ρ = −D̃α(ρA1A2B ∣∣1A1A2 ⊗σB)

= −D̃α(ρA1B ∣∣1A1 ⊗σB) + H̃
↓
α(A2∣A1B)ν

≤ H̃↑α(A1∣B)ρ + H̃
↓
α(A2∣A1B)ν

for νA1A2B defined as in the lemma. �

We transform [DFR20, Theorem 3.3] to a statement about H̃↑α in the following.

Lemma A.6. Let α ∈ [1
2 ,∞) and ρA1A2B1B2 be a state which satisfies the Markov chain

A1 ↔ B1 ↔ B2. Then, we have

H̃↑α(A1A2∣B1B2)ρ ≥ H̃
↑
α(A1∣B1)ρ + inf

ν
H̃↓α(A2∣A1B1B2)ν (A.9)

where the infimum is taken over all states νA1A2B1B2 such that νA2B2∣A1B1 = ρA2B2∣A1B1.

Proof. Since, ρ satisfies the Markov chain A1 ↔ B1 ↔ B2, there exists a decomposition of
the system B1 as [Sut18, Theorem 5.4]

B1 =⊕
j∈J

aj ⊗ cj

such that

ρA1B1B2 =⊕
j∈J

p(j)ρA1aj ⊗ ρcjB2 . (A.10)

Let J ′ ⊆ J be the set {j ∈ J ∶ p(j) > 0}. Note, that we can replace J by J ′ in the above
equation.
We can define the CPTP recovery map RB1→B1B2 for ρA1B1B2 as

RB1→B1B2(X) ∶= ⊕
j∈J

trcj (Πaj ⊗ΠcjXΠaj ⊗Πcj) ⊗ ρcjB2 (A.11)

where Πaj ⊗Πcj is the projector on the subspace aj ⊗ cj. This recovery channel satisfies

RB1→B1B2(ρA1B1) = ρA1B1B2 . (A.12)

We can now show that the optimisation for the conditional entropy H̃↑α(A1∣B1B2)ρ can be
restricted to states of the form RB1→B1B2 (σB1). This follows as

H̃↑α(A1∣B1B2)ρ = sup
σB1B2

−D̃α(ρA1B1B2 ∣∣1A1 ⊗σB1B2)

≤ sup
σB1B2

−D̃α(RB1→B1B2 ○ trB2 (ρA1B1B2) ∣∣RB1→B1B2 ○ trB2 (1A1 ⊗σB1B2))

= sup
σB1

−D̃α(ρA1B1B2 ∣∣1A1 ⊗RB1→B1B2 (σB1))
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≤ sup
σB1B2

−D̃α(ρA1B1B2 ∣∣1A1 ⊗σB1B2)

= H̃↑α(A1∣B1B2)ρ

where the second line follows from the data processing inequality for D̃α for α ≥ 1
2 , the

supremum in the fourth line is over all states on the registers B1B2,and the last line simply
follows from the definition of H̃↑α(A1∣B1B2)ρ. As a result, it follows that

H̃↑α(A1∣B1B2)ρ = sup
σB1

−D̃α(ρA1B1B2 ∣∣1A1 ⊗RB1→B1B2 (σB1)) (A.13)

Let σB1B2 = RB1→B1B2 (ηB1) be such that H̃↑α(A1∣B1B2)ρ = −D̃α(ρA1B1B2 ∣∣1A1 ⊗σB1B2). Using
Corollary A.5, for this choice of σB1B2 , we have that

H̃↑α(A1A2∣B1B2)ρ ≥ H̃
↑
α(A1∣B1B2)ρ + H̃

↓
α(A2∣A1B1B2)ν (A.14)

where the state νA1A2B1B2 is defined as

νA1B1B2 ∶=
(ρ

1
2
A1B1B2

σ−α
′

B1B2
ρ

1
2
A1B1B2

)
α

tr(ρ
1
2
A1B1B2

σ−α
′

B1B2
ρ

1
2
A1B1B2

)
α

νA1A2B1B2 ∶= ν
1
2
A1B1B2

ρA2∣A1B1B2ν
1
2
A1B1B2

.

We will now show that νA2B2∣A1B1 = ρA2B2∣A1B1 . For this it is sufficient to show that

ν
− 1

2
A1B1

ν
1
2
A1B1B2

= ρ
− 1

2
A1B1

ρ
1
2
A1B1B2

.

We have that

σB1B2 = RB1→B1B2 (ηB1)

=⊕
j∈J

trcj (Πaj ⊗ΠcjηB1Πaj ⊗Πcj) ⊗ ρcjB2

=⊕
j∈J

q(j)ωaj ⊗ ρcjB2

where we have defined the probability distribution q(j) ∶= tr(Πaj ⊗ ΠcjηB1) and states
ωaj =

1
q(j)Πaj trcj (ΠcjηB1Πcj)Πaj for every j ∈ J .

Since D̃α(ρA1B1B2 ∣∣1A1 ⊗σB1B2) = −H̃
↑
α(A1∣B1B2)ρ ≤ log ∣A1∣ < ∞, we have that

ρA1B1B2 ≪ 1A1 ⊗σB1B2

⇒⊕
j∈J ′

p(j)ρA1aj ⊗ ρcjB2 ≪ 1A1 ⊗⊕
j∈J

q(j)ωaj ⊗ ρcjB2

⇒for every j ∈ J ′ ∶ ρA1aj ≪ 1A1 ⊗ωaj and q(j) > 0. (A.15)
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This decomposition can be used to evaluate νA1B1B2 as follows

νA1B1B2 =
1
N

(ρ
1
2
A1B1B2

σ−α
′

B1B2ρ
1
2
A1B1B2

)
α

=
1
N

(⊕
j∈J ′

p(j)
1
2ρ

1
2
A1aj

⊗ ρ
1
2
cjB2 ⊕

j∈J
q(j)−α

′

ω−α
′

aj
⊗ ρ−α

′

cjB2 ⊕
j∈J ′

p(j)
1
2ρ

1
2
A1aj

⊗ ρ
1
2
cjB2

)

α

=
1
N

(⊕
j∈J ′

p(j)q(j)−α
′

ρ
1
2
A1aj

ω−α
′

aj
ρ

1
2
A1aj

⊗ ρ1−α′
cjB2)

α

=
1
N
⊕
j∈J ′

p(j)αq(j)1−α (ρ
1
2
A1aj

ω−α
′

aj
ρ

1
2
A1aj

)
α

⊗ ρcjB2

for N ∶= tr(ρ
1
2
A1B1B2

σ−α
′

B1B2
ρ

1
2
A1B1B2

)
α

. Further, we have

ν
− 1

2
A1B1

ν
1
2
A1B1B2

=
1

N− 1
2
⊕
j∈J ′

p(j)−
α
2 q(j)−

1−α
2 (ρ

1
2
A1aj

ω−α
′

aj
ρ

1
2
A1aj

)
−α2

⊗ ρ
− 1

2
cj

⋅
1
N

1
2
⊕
j∈J ′

p(j)
α
2 q(j)

1−α
2 (ρ

1
2
A1aj

ω−α
′

aj
ρ

1
2
A1aj

)

α
2
⊗ ρ

1
2
cjB2

= ⊕
j∈J ′

(ρ
1
2
A1aj

ω−α
′

aj
ρ

1
2
A1aj

)
0
⊗ ρ

− 1
2

cj ρ
1
2
cjB2

= ⊕
j∈J ′

ρ0
A1aj

⊗ ρ
− 1

2
cj ρ

1
2
cjB2

where in the last line we have used that the projector (ρ
1
2
A1aj

ω−α
′

aj
ρ

1
2
A1aj

)
0
is equal to the

projector ρ0
A1aj

for every j ∈ J ′ (here P 0 is the projector onto the image of positive semidefinite
operator P ). This can be seen since for every j ∈ J ′ we first have

im(ρ
1
2
A1aj

ω−α
′

aj
ρ

1
2
A1aj

) ⊆ im (ρA1aj) . (A.16)

Second, we have that Eq. A.15 above implies that ω0
aj
ρ0
Aaj

= ρ0
Aaj

for every j ∈ J ′. Now, for
j ∈ J ′ we have the following inequality

(ρ
1
2
A1aj

ω−α
′

aj
ρ

1
2
A1aj

) ≥m(ρ
1
2
A1aj

ω0
aj
ρ

1
2
A1aj

)

=mρA1aj

where m > 0 is the minimum non-zero eigenvalue of ω−α′aj
. Finally, raising the above to the

power of 0 (this action is operator monotone)

(ρ
1
2
A1aj

ω−α
′

aj
ρ

1
2
A1aj

)
0
≥ ρ0

A1aj
. (A.17)
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Eq. A.16 and A.17 together imply that for j ∈ J ′

(ρ
1
2
A1aj

ω−α
′

aj
ρ

1
2
A1aj

)
0
= ρ0

A1aj
.

Finally, we have that

ρ
− 1

2
A1B1

ρ
1
2
A1B1B2

= ⊕
j∈J ′

p(j)−
1
2ρ

− 1
2

A1aj
⊗ ρ

− 1
2

cj ⊕
j∈J ′

p(j)
1
2ρ

1
2
A1aj

⊗ ρ
1
2
cjB2

= ⊕
j∈J ′

ρ0
A1aj

⊗ ρ
− 1

2
cj ρ

1
2
cjB2

.

This proves that

ν
− 1

2
A1B1

ν
1
2
A1B1B2

= ρ
− 1

2
A1B1

ρ
1
2
A1B1B2

(A.18)

and hence

νA2B2∣A1B1 = ν
− 1

2
A1B1

ν
1
2
A1B1B2

νA2∣A1B1B2ν
1
2
A1B1B2

ν
− 1

2
A1B1

= ρ
− 1

2
A1B1

ρ
1
2
A1B1B2

ρA2∣A1B1B2ρ
1
2
A1B1B2

ρ
− 1

2
A1B1

= ρA2B2∣A1B1

where we have used the fact that νA2∣A1B1B2 = ρA2∣A1B1B2 and Eq. A.18. We can now modify
Eq. A.14 to get

H̃↑α(A1A2∣B1B2)ρ ≥ H̃
↑
α(A1∣B1B2)ρ + inf

ν
H̃↓α(A2∣A1B1B2)ν

where the infimum is over states ν such that νA2B2∣A1B1 = ρA2B2∣A1B1 . We can use the data
processing inequality to get

H̃↑α(A1∣B1B2)ρ = H̃
↑
α(A1∣B1B2)RB1→B1B2(ρAB1)

≥ H̃↑α(A1∣B1)ρ.

Together with the above inequality this proves the lemma. �

We will use the following modification of [DFR20, Corollary 3.5].

Corollary A.7. Let MR→A2B2 be a channel and ρA1A2B1B2 = M(ρ′A1B1R
) such that the

Markov chain A1 ↔ B1 ↔ B2 holds. Then, we have

H̃↑α(A1A2∣B1B2)ρ ≥ H̃
↑
α(A1∣B1)ρ + inf

ω
H̃↓α(A2∣A1B1B2)M(ω) (A.19)

where the infimum is taken over all states ωA1B1R. Moreover, if ρ′A1B1R
is pure then we can

restrict the optimisation to pure states.

177



Proof. The proof is the same as [DFR20, Corollary 3.5]. We include it here for the sake of
completeness.

It is sufficient to show that for every state ν such that νA2B2∣A1B1 = ρA2B2∣A1B1 , there exists
an ωA1B1R such that νA1A2B1B2 =M(ω). For such a ν, we can define

ωRA1B1 = ν
1
2
A1B1

ρ
− 1

2
A1B1

ρ′A1B1Rρ
− 1

2
A1B1

ν
1
2
A1B1

which can be seen to be a valid state and also satisfy νA1A2B1B2 =M(ω). �

A.4. Dimension bounds for conditional Rényi entropies
Lemma A.8 (Dimension bound). For α ∈ [1

2 ,∞], a state ρA1A2B, the following bounds hold
for the sandwiched conditional entropies

H̃↓α(A1∣B)ρ − log ∣A2∣ ≤ H̃
↓
α(A1A2∣B)ρ ≤ H̃

↓
α(A1∣B)ρ + log ∣A2∣

H̃↑α(A1∣B)ρ − log ∣A2∣ ≤ H̃
↑
α(A1A2∣B)ρ ≤ H̃

↑
α(A1∣B)ρ + log ∣A2∣.

For α ∈ [0,2] and a state ρA1A2B, the following bounds hold for the Petz conditional entropies

H̄↓α(A1A2∣B)ρ ≤ H̄
↓
α(A1∣B)ρ + log ∣A2∣

H̄↑α(A1A2∣B)ρ ≤ H̄
↑
α(A1∣B)ρ + log ∣A2∣.

Proof. For the sandwiched conditional entropies, we simply use the corresponding
chain rules (Corollary A.4 or Corollary A.5) along with the fact that for all states ν,
H̃↓α(A2∣A1B)ν ∈ [− log ∣A2∣, log ∣A2∣] [Tom16, Lemma 5.2].

For the Petz conditional entropies, we will make use of the Jensen’s inequality for oper-
ators [Bha97, Theorem V.2.3]. Suppose, {∣ei⟩}

∣X ∣
i=1 is an orthogonal basis for the space X.

Then, we have for a positive operator PXY and α ∈ [0,1]

trX Pα
XY =

∣X ∣
∑
i=1
1Y ⊗⟨ei∣X P

α
XY 1Y ⊗ ∣ei⟩X

≤ ∣X ∣
⎛

⎝

∣X ∣
∑
i=1

1
∣X ∣

1Y ⊗⟨ei∣X PXY 1Y ⊗ ∣ei⟩X
⎞

⎠

α

= ∣X ∣1−αPα
Y (A.20)

where in the second step we have used the operator Jensen’s inequality with the operators

{ 1√
∣X ∣ 1Y ⊗ ∣ei⟩X}

∣X ∣

i=1
along with the fact that the map X ↦ Xα is operator concave. For
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α ∈ [1,2] and positive operator PXY , we can use the same argument as above and the fact
that X ↦Xα is operator convex in this regime and derive

trX Pα
XY ≥ ∣X ∣1−αPα

Y . (A.21)

To prove the dimension bound, observe that for a positive state σB and α ∈ [0,2], we have

−D̄α(ρA1A2B ∣∣1A1A2 ⊗σB) =
1

1 − α log tr (ραA1A2Bσ
1−α
B )

=
1

1 − α log tr (trA2 (ρ
α
A1A2B

)σ1−α
B )

≤
1

1 − α log tr (∣A2∣
1−αραA1Bσ

1−α
B )

= −D̄α(ρA1B ∣∣1A1 ⊗σB) + log ∣A2∣.

We can now take a supremum over σB to prove the dimension bound for H̄↑α or choose
σB = ρB to prove the dimension bound for H̄↓α. �

The following lemma was originally proven in [MLDS+13, Proposition 8]. We reproduce
the proof argument here.

Lemma A.9. For α ∈ [1
2 ,∞], a state ρABC, we have

H̃↑α(A∣BC)ρ ≥ H̃
↑
α(AC ∣B)ρ − log ∣C ∣ (A.22)

and for α ∈ [0,2]

H̄↑α(A∣BC)ρ ≥ H̄
↑
α(AC ∣B)ρ − log ∣C ∣ (A.23)

Proof. By the definition of the sandwiched conditional entropy, we have

H̃↑α(A∣BC) = sup
ηBC∈D(BC)

−D̃α(ρABC ∣∣1A⊗ηBC)

≥ sup
ηB∈D(B)

−D̃α (ρABC ∣∣1A⊗
1C

∣C ∣
⊗ ηB)

= sup
ηB∈D(B)

−D̃α (ρABC ∣∣1AC ⊗ηB) − log ∣C ∣

= H̃↑α(AC ∣B) − log ∣C ∣

where we simply restrict the supremum in the second line to states of the form ηBC = ηB⊗
1C
∣C∣

to derive the inequality. The same proof also works with H̄↑α entropy. �

The following lemma was originally proven in [Led16, Proposition 3.3.5].
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Lemma A.10 (Dimension bound for conditioning register). For α ∈ [1
2 ,∞] and a state ρABC

we have

H̃↑α(A∣BC)ρ ≥ H̃
↑
α(A∣B)ρ − 2 log ∣C ∣. (A.24)

Further, if the register C is classical, then we have

H̃↑α(A∣BC)ρ ≥ H̃
↑
α(A∣B)ρ − log ∣C ∣. (A.25)

Proof. This bound can be proven by combining Lemma A.8 and Lemma A.9. In the case that
C is classical, we have the inequality H̃↑α(AC ∣B)ρ ≥ H̃

↑
α(A∣B)ρ [Tom16, Lemma 5.3]. �

A.5. Necessity for constraints on side information size
for approximate AEP and EAT and its implication
for approximate GEAT

It turns out that it is necessary to place some sort of bound on the size of the side
information for an approximate entropy accumulation theorem of the form in Theorem 3.12.
The following classical example demonstrates this. This example also demonstrates the
necessity for a bound on the size of the side information in an approximate asymptotic
equipartition of the form in Theorem 3.11.

Let there be n rounds. For k ∈ [n], the map Mk ∶ Ak−1
1 → AkBkCk. This map sets the

variables as follows:
(1) Measure Ak−1

1 in the standard basis.
(2) Let Ak ∈R {0,1} be a randomly chosen bit.
(3) Let Ck = 0 with probability ε

2 and Ck = 1 otherwise.
(4) In the case that Ck = 1, let Bk ∈R {0,1}n be a randomly chosen n-bit string.

Otherwise, let Bk = Ak1Rk, where Rk is an (n − k) bit randomly chosen string from
{0,1}.

Let M′
k be the map which always chooses Bk to be a random n-bit string. It is

easy to see that in this case, we have Hmin(An1 ∣B
n
1C

n
1 )M′

n ○⋯○M′
1(1) = n log(2) whereas

Hδ
min(A

n
1 ∣B

n
1C

n
1 )Mn ○⋯○M1(1) = O(1) even though for every k ∈ [n], the mapsMk are ε−close

in diamond norm distance to the mapsM′
k. This proves that a bound on the size of the side

registers is indeed necessary for approximate entropy accumulation. We show these facts
formally in the following.
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Lemma A.11. Suppose Φ ∶ R → A and Φ′ ∶ R → A are two channels which take a register R
and measure it in the standard basis and map the resulting classical register C to the classical
register A. Then, for every ρRR′, we have

∥Φ(ρRR′) −Φ′(ρRR′)∥1 ≤ ∥PΦ
AC − P

Φ′

AC∥1 (A.26)

where PΦ
AC and PΦ′

AC are the classical distributions produced when the maps Φ and Φ′ are
applied to the state ρRR′ respectively.

Proof. Let {∣c⟩ ⟨c∣}c represent the measurement in the standard basis. Since, both the chan-
nels first measure register R in the standard basis, they produce the state

ρCR′ = ∑
c

∣c⟩ ⟨c∣C ⊗ trR (∣c⟩ ⟨c∣R ρRR′)

= ∑
c

p(c) ∣c⟩ ⟨c∣C ⊗ ρR′∣c

where we have defined p(c) ∶= tr (∣c⟩ ⟨c∣R ρR) and ρR′∣c ∶=
1

p(c) trR (∣c⟩ ⟨c∣R ρRR′). Now, the
action of channel Φ on register C can be represented using the conditional probability dis-
tribution pΦ

A∣C and the action of channel Φ′ on register C can be similarly represented using
pΦ′

A∣C . We can define the states

ρΦ
ACR′ ∶= ∑

ac

pΦ
A∣C(a∣c)p(c) ∣a,c⟩ ⟨a,c∣ ⊗ ρR′∣c

ρΦ′

ACR′ ∶= ∑
ac

pΦ′

A∣C(a∣c)p(c) ∣a,c⟩ ⟨a,c∣ ⊗ ρR′∣c.

Note that trC (ρΦ
ACR′) = Φ(ρRR′) and trC (ρΦ′

ACR′) = Φ′(ρRR′). Further, we can view the R′

register of ρΦ
ACR′ and ρΦ′

ACR′ as being created by a channel which measures the register C and
outputs the state ρR′∣c in the register R′. Therefore, we have

∥Φ(ρRR′) −Φ′(ρRR′)∥1 ≤ ∥ρΦ
ACR′ − ρ

Φ′

ACR′∥1

≤ ∥ρΦ
AC − ρ

Φ′

AC∥1

= ∥PΦ
AC − P

Φ′

AC∥1 .

�

We can use the above lemma to evaluate the distance between the channels Mk and M′
k.

Using the above lemma, it is sufficient to suppose that the input of the channels are classical.
We can suppose that the registers Ak−1

1 are classical and distributed as PAk−1
1

. Let PAk1BkCk
be the output ofMk on this distribution and QAk1BkCk

be the output of applyingM′
k. Then,

we have

∥PAk1BkCk −QAk1BkCk
∥

1
= ∑
ak1 ,ck

P (ak−1
1 )P (ak)P (ck) ∥PBk ∣ak1 ,ck −QBk∥1
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= ∑
ak1

P (ak−1
1 )P (ak) ((1 − ε2)∥PBk ∣ak1 ,ck=1 −QBk∥1

+
ε

2 ∥PBk ∣ak1 ,ck=0 −QBk∥1
)

≤ ∑
ak1

P (ak−1
1 )P (ak)ε

= ε

where in the first line we have used the fact that Ak and Ck are chosen independently with
the same distribution in both the maps and the fact that Bk is chosen independently inM′

k,
for the third line we have used the fact that Bk is independent and has the same distribution
as QBk when ck = 1. Since, this is true for all input distributions, we have ∥Mk −M

′
k∥◇ ≤ ε.

Now, let RAn1B
n
1 C

n
1
be the probability distribution created when the mapsMk are applied

sequentially n times and SAn1Bn1 Cn1 be the probability distribution created when the mapsM′
k

are applied sequentially n times. Since, Bk and Ck are independent of Ak in the distribution
S, we have

Hmin(A
n
1 ∣B

n
1C

n
1 )S = n log(2).

We will show that Hε′

min(A
n
1 ∣B

n
1C

n
1 )R = O(1) as long as ε′ ≤ 1

4 . Let l ∶= 2
ε log 1

ε′ . Let E be the
event that there exists a k > n− l such that Ck = 0. For our choice of l, we have p(E) ≥ 1− ε′.

Lemma A.12. Let PAB be a subnormalised probability distribution such that A = f(B) for
some function f (that is, P (a,b) > 0 only if a = f(b)). Then, Hε

min(A∣B)P ≤ log 1
tr(P )−

√
2ε .

Proof. Let P ′
AB be a distribution ε-close to P in purified distance. Then, it is

√
2ε close to

P in trace distance. We have that

e−Hmin(A∣B)P ′ = P ′
guess(A∣B)

≥ ∑
b

P ′
AB(f(b), b)

≥ ∑
b

PAB(f(b), b) −
√

2ε

= tr(P ) −
√

2ε

which implies that Hmin(A∣B)P ′ ≤ log 1
tr(P )−

√
2ε . Since, this is true for every distribution

ε-close to P , it also holds for Hε
min(A∣B)P . �

We then have that

Hε′

min(A
n
1 ∣B

n
1C

n
1 )R ≤Hε′

min(A
n
1 ∣B

n
1C

n
1 ∧E)R

≤Hε′

min(A
n−l
1 ∣Bn

1C
n
1 ∧E)R + l log(2)
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≤ log 1
p(E) −

√
2ε′

+ l log(2)

≤ log 1
1 − ε′ −

√
2ε′

+ l log(2)

≤ l log(2) + log 8/3 = O(1)

where in the first line we have used [TL17, Lemma 10] in the first line, dimension bound
(can be proven using Lemma A.8) in the second line, Lemma A.12 in the third line and the
fact that p(E) ≥ 1 − ε′.

Also, note that the example given here satisfies

∥PAk1Bk1Ck1 − PAk−1
1 Bk−1

1 Ck−1
1
PAkBkCk∥1

≤ ε

for every k. This also proves that a bound on the size of the side information registers
(BkCk here), as we have in Theorem 3.11, is necessary for an approximate version of AEP.

Further, this example also rules out the possibility of a natural approximate extension to
the generalised entropy accumulation theorem (GEAT) [MFSR24] where the mapsMk ≈ε

M′
k and the mapsM′

k satisfy the non-signalling conditions because one can write the entropy
accumulation scenario in the form of a generalised entropy accumulation scenario where Eve’s
information contains the side information Bk

1E in each step. Thus, it would not be possible
to prove a meaningful bound on the smooth min-entropy without some sort of bound on the
information transferred between the adversary’s register Ei and the register Ri.

A.6. Classical approximate EAT
We present a simple proof for the approximate entropy accumulation theorem for classical

distributions. This result requires a much weaker assumption than Theorem 3.12.

Theorem A.13. Let pAn1Bn1E be a classical distribution such that for every k ∈ [n], and
ak−1

1 , bk−1
1 and e

∥pAkBk ∣ak−1
1 ,bk−1

1 ,e − q
(k)
AkBk ∣ak−1

1 ,bk−1
1 ,e

∥
∞
≤ ε (A.27)

where ∥v∥∞ ∶= maxi ∣v(i)∣ and the q(k)
Bk ∣ak−1

1 ,bk−1
1 ,e

= q
(k)
Bk ∣bk−1

1 ,e
or equivalently q(k) satisfies the

Markov chain Ak ↔ Bk−1
1 E ↔ Bk. Also, let ∣Ak∣ = ∣A∣, ∣Bk∣ = ∣B∣ for every k ∈ [n].

Then, for ε′ ∈ (0,1) and α ∈ (1,1 + 1
log(1+2∣A∣)), we have that

Hε′

min(A
n
1 ∣B

n
1E)p ≥

n

∑
k=1

inf
q
H(Ak∣BkA

k−1
1 Bk−1

1 E)
q
(k)

AkBk ∣A
k−1
1 Bk−1

1 E
q
Ak−1

1 Bk−1
1 E
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− n(α − 1) log2(2∣A∣ + 1) − α

α − 1n log(1 + ε∣A∣∣B∣) −
g0(ε′)

α − 1 . (A.28)

where g0(x) ∶= − log(1 −
√

1 − x2). The infimums are taken over all possible input probability
distributions.

For α = 1 +
√
ε (assuming

√
ε ≤ 1 + 1

log(1+2∣A∣)), and using α ≤ 2 and log(1 + x) ≤ x as long
as x ≥ 0, the above bound gives us

Hε′

min(A
n
1 ∣B

n
1E)p ≥

n

∑
k=1

inf
q
H(Ak∣BkA

k−1
1 Bk−1

1 E)
q
(k)

AkBk ∣A
k−1
1 Bk−1

1 E
q
Ak−1

1 Bk−1
1 E

− n
√
ε (log2(2∣A∣ + 1) − 2∣A∣∣B∣) −

g0(ε′)

α − 1 (A.29)

Proof. For every k ∈ [n], we modify q(k)
AkBk ∣Ak−1

1 Bk−1
1 E

to create the distributions r(k)
AkBk ∣Ak−1

1 Bk−1
1 E

,
which are defined as follows

(1) Choose a random variable Ck from {0,1} with probabilities ( ∣A∣∣B∣ε
1+∣A∣∣B∣ε ,

1
1+∣A∣∣B∣ε).

(2) If Ck = 1, then choose random variables Ak,Bk using q
(k)
AkBk ∣Ak−1

1 Bk−1
1 E

else choose
Ak,Bk randomly with probability 1

∣A∣∣B∣ .

That is, we have

r
(k)
AkBk ∣Ak−1

1 Bk−1
1 E

∶=
1

1 + ∣A∣∣B∣ε
q
(k)
AkBk ∣Ak−1

1 Bk−1
1 E

+
∣A∣∣B∣ε

1 + ∣A∣∣B∣ε
uAkBk

where uAkBk is the uniform distribution on the registers Ak and Bk.

For every k, ak−1
1 , bk−1

1 , and e, we have

∥pAkBk ∣ak−1
1 ,bk−1

1 ,e − q
(k)
AkBk ∣ak−1

1 ,bk−1
1 ,e

∥
∞
≤ ε

⇒ pAkBk ∣ak−1
1 ,bk−1

1 ,e ≤ q
(k)
AkBk ∣ak−1

1 ,bk−1
1 ,e

+ ε1AkBk

⇒ pAkBk ∣ak−1
1 ,bk−1

1 ,e ≤ q
(k)
AkBk ∣ak−1

1 ,bk−1
1 ,e

+ ε∣A∣∣B∣uAkBk

⇒ pAkBk ∣ak−1
1 ,bk−1

1 ,e ≤ (1 + ∣A∣∣B∣ε)r
(k)
AkBk ∣Ak−1

1 Bk−1
1 E

Define the distribution

rAn1Bn1E =
n

∏
k=1

r
(k)
AkBk ∣Ak−1

1 Bk−1
1 E

pE. (A.30)

Note that for every k, ak−1
1 , bk1, and e, we have

rBk ∣Ak−1
1 Bk−1

1 E(bk∣a
k−1
1 bk−1

1 e) =
1

1 + ∣A∣∣B∣ε
q
(k)
Bk ∣Ak−1

1 Bk−1
1 E

(bk∣a
k−1
1 bk−1

1 e) +
ε

1 + ∣A∣∣B∣ε

=
1

1 + ∣A∣∣B∣ε
q
(k)
Bk ∣Bk−1

1 E
(bk∣b

k−1
1 e) +

ε

1 + ∣A∣∣B∣ε
,
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Fig. A.1. Setting for classical EAT

which implies

rBk ∣Bk−1
1 E(bk∣b

k−1
1 e) = ∑

āk−1
1

rAk−1
1 ∣Bk−1

1 E(ā
k−1
1 ∣bk−1

1 e)rBk ∣Ak−1
1 Bk−1

1 E(bk∣ā
k−1
1 bk−1

1 e)

= ∑
āk−1

1

rAk−1
1 ∣Bk−1

1 E(ā
k−1
1 ∣bk−1

1 e)(
1

1 + ∣A∣∣B∣ε
q
(k)
Bk ∣Bk−1

1 E
(bk∣b

k−1
1 e) +

ε

1 + ∣A∣∣B∣ε
)

= rBk ∣Ak−1
1 Bk−1

1 E(bk∣a
k−1
1 bk−1

1 e).

Thus, for every k ∈ [n], r satisfies the Markov chain Ak−1
1 ↔ Bk−1

1 E ↔ Bk. Further, we have

pAn1Bn1E(a
n
1 , b

n
1 , e) =

n

∏
k=1

pAkBk ∣Ak−1
1 ,Bk−1

1 ,E(ak, bk∣a
k−1
1 , bk−1

1 , e)pE(e)

≤ (1 + ε∣A∣∣B∣)n
n

∏
k=1

r
(k)
AkBk ∣Ak−1

1 ,Bk−1
1 ,E

(ak, bk∣a
k−1
1 , bk−1

1 , e)pE(e)

= (1 + ε∣A∣∣B∣)nrAn1Bn1E(a
n
1 , b

n
1 , e)

which shows that Dmax(pAn1Bn1E ∣∣rAn1Bn1E) ≤ n log(1 + ε∣A∣∣B∣).

The distribution rAn1Bn1E can be viewed as the result of a series of maps as in Fig. A.1.
We can now use the EAT chain rule [DFR20, Corollary 3.5] along with [DFR20, Lemma
B.9] n-times to bound the entropy of this auxiliary distribution. We get

H̃↑α(A
n
1 ∣B

n
1E)r ≥

n

∑
k=1

inf
q
Ak−1

1 Bk−1
1 E

H̃↓α(Ak∣BkA
k−1
1 Bk−1

1 E)
r
(k)

AkBk ∣A
k−1
1 Bk−1

1 E
q
Ak−1

1 Bk−1
1 E

≥
n

∑
k=1

inf
q
Ak−1

1 Bk−1
1 E

H(Ak∣BkA
k−1
1 Bk−1

1 E)
r
(k)

AkBk ∣A
k−1
1 Bk−1

1 E
q
Ak−1

1 Bk−1
1 E

− n(α − 1) log2(2∣A∣ + 1)

≥
n

∑
k=1

( inf
q
Ak−1

1 Bk−1
1 E

1
1 + ∣A∣∣B∣ε

H(Ak∣BkA
k−1
1 Bk−1

1 E)
q
(k)

AkBk ∣A
k−1
1 Bk−1

1 E
q
Ak−1

1 Bk−1
1 E

+
ε

1 + ∣A∣∣B∣ε
log ∣A∣) − n(α − 1) log2(2∣A∣ + 1)

≥
n

∑
k=1

inf
q
Ak−1

1 Bk−1
1 E

H(Ak∣BkA
k−1
1 Bk−1

1 E)
q
(k)

AkBk ∣A
k−1
1 Bk−1

1 E
q
Ak−1

1 Bk−1
1 E

− n(α − 1) log2(2∣A∣ + 1)
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for α ∈ (1,1 + 1
log(1+2∣A∣)). In the third line, we have used the concavity of the von Neumann

entropy along with the definition of r(k)
AkBk ∣Ak−1

1 Bk−1
1 E

. Using Lemma 3.5, we have

Hε′

min(A
n
1 ∣B

n
1E)p ≥ H̃

↑
α(A

n
1 ∣B

n
1E)r −

α

α − 1Dmax(pAn1Bn1E ∣∣rAn1Bn1E) −
g1(ε′,0)
α − 1

≥
n

∑
k=1

inf
q
H(Ak∣BkA

k−1
1 Bk−1

1 E)
q
(k)

AkBk ∣A
k−1
1 Bk−1

1 E
q
Ak−1

1 Bk−1
1 E

− n(α − 1) log2(2∣A∣ + 1) − α

α − 1n log(1 + ε∣A∣∣B∣) −
g0(ε′)

α − 1 .

�

A.7. Lemma to bound distance after conditioning
The following lemma relates the distance of two states conditioned on an event to the

distance between them without conditioning.

Lemma A.14. Suppose ρXA = ∑x∈X p(x) ∣x⟩ ⟨x∣ ⊗ ρA∣x and ρ̃XA = ∑x∈X p̃(x) ∣x⟩ ⟨x∣ ⊗ ρ̃A∣x are
classical-quantum states such that 1

2 ∥ρXA − ρ̃XA∥1 ≤ ε. Then, for x ∈ X such that p(x) > 0,
we have

1
2
∥ρA∣x − ρ̃A∣x∥1 ≤

2ε
p(x)

(A.31)

Proof.
1
2 ∥ρXA − ρ̃XA∥1 =

1
2 ∑x∈X

∥p(x)ρA∣x − p̃(x)ρ̃A∣x∥1 ≤ ε

This implies that for x ∈ X
1
2
∥p(x)ρA∣x − p̃(x)ρ̃A∣x∥1 ≤ ε

and
1
2 ∣p(x) − p̃(x)∣ ≤ ε.

Using these inequalities, we have

1
2
∥ρA∣x − ρ̃A∣x∥1 ≤

1
2 ∥ρA∣x −

p̃(x)

p(x)
ρ̃A∣x∥

1
+

1
2 ∣1 − p̃(x)

p(x)
∣ ∥ρ̃A∣x∥1

=
1

p(x)

1
2
∥p(x)ρA∣x − p̃(x)ρ̃A∣x∥1 +

1
p(x)

1
2 ∣p(x) − p̃(x)∣

≤
2ε
p(x)

.

�
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A.8. Proof of approximate EAT with testing
To prove Theorem 3.18, we follow [MFSR24], which is itself based on [DF19].

Proof of Theorem 3.18. Just as in the proof of Theorem 3.12, we define

Mδ
k ∶= (1 − δ)M′

k +δMk (A.32)

for every k and the state

σAn1Bn1Xn
1 E

∶= Mδ
n ○⋯ ○Mδ

1(ρ
(0)
R0E

). (A.33)

so that for β > 1 and ε1 > 0, we have

Dε1
max(ρAn1Bn1Xn

1 E
∣∣σAn1Bn1Xn

1 E
) ≤ nzβ(ε, δ) +

g0(ε1)

β − 1 . (A.34)

Define dβ ∶= nzβ(ε, δ) + g0(ε1)
β−1 . The bound above implies that there exists a state ρ̃An1Bn1Xn

1 E
,

which is also classical on Xn
1 such that

P (ρAn1Bn1Xn
1 E
, ρ̃An1Bn1Xn

1 E
) ≤ ε1 (A.35)

and

ρ̃An1Bn1Xn
1 E

≤ edβσAn1Bn1Xn
1 E
. (A.36)

The registers Xn
1 for ρ̃ can be chosen to be classical, since the channel measuring Xn

1 only
decreases the distance between ρ̃ and ρ, and the new state produced would also satisfy
Eq. A.36. As the registers Xn

1 are classical for both σ and ρ̃, we can condition these states
on the event Ω. We will call the probability of the event Ω for the state σ and ρ̃ Prσ(Ω) and
Prρ̃(Ω) respectively. Using Lemma A.14 and the Fuchs-van de Graaf inequality, we have

P (ρAn1Bn1Xn
1 E∣Ω, ρ̃An1Bn1Xn

1 E∣Ω) ≤ 2
√

ε1
Prρ(Ω)

. (A.37)

Conditioning Eq. A.36 on Ω, we get

Pr̃
ρ
(Ω)ρ̃An1Bn1Xn

1 E∣Ω ≤ edβ Pr
σ
(Ω)σAn1Bn1Xn

1 E∣Ω. (A.38)

Together, the above two equations imply that

Dε2
max(ρAn1Bn1Xn

1 E∣Ω∣∣σAn1Bn1Xn
1 E∣Ω) ≤ nzβ(ε, δ) +

g0(ε1)

β − 1 + log Prσ(Ω)

Prρ̃(Ω)
(A.39)

for ε2 ∶= 2
√

ε1
Prρ(Ω) .

For ε3 > 0 and α ∈ (1,2), we can plug the above in the bound provided by Lemma 3.5 to
get

Hε2+ε3
min (An1 ∣B

n
1E)ρ∣Ω ≥ H̃↑α(A

n
1 ∣B

n
1E)σ∣Ω −

α

α − 1nzβ(ε, δ)

187



−
1

α − 1 (α log Prσ(Ω)

Prρ̃(Ω)
+ g1(ε3, ε2) +

αg0(ε1)

β − 1 ) . (A.40)

Now, note that using Eq. 3.65 and [DFR20, Lemma B.7] we have

H̃↑α(A
n
1 ∣B

n
1E)σ∣Ω = H̃↑α(A

n
1X

n
1 ∣B

n
1E)σ∣Ω . (A.41)

For every k, we introduce a register Dk of dimension ∣Dk∣ = ⌈emax(f)−min(f)⌉ and a channel
Dk ∶Xk →XkDk as

Dk(ω) ∶= ∑
x

⟨x∣ω∣x⟩ ∣x⟩ ⟨x∣ ⊗ τx (A.42)

where for every x, the state τx is a mixture between a uniform distribution on
{1,2,⋯ , ⌊emax(f)−f(δx)⌋} and a uniform distribution on {1,2,⋯ , ⌈emax(f)−f(δx)⌉}, so
that

H(Dk)τx = max(f) − f(δx) (A.43)

where δx is the distribution with unit weight at element x.

Define the channels M̄k ∶= Dk○Mk, M̄′
k ∶= Dk○M

′
k and M̄δ

k ∶= Dk○M
δ
k = (1−δ)M̄′

k+δM̄k

and the state

σ̄An1Bn1Xn
1 D

n
1E

∶= M̄δ
n ○ ⋯M̄

δ
1(ρ

(0)
R0E

) (A.44)

Note that σ̄An1Bn1Xn
1 E

= σAn1Bn1Xn
1 E

. [MFSR24, Lemma 4.5] implies that this satisfies

H̃↑α(A
n
1X

n
1 ∣B

n
1E)σ∣Ω = H̃↑α(A

n
1X

n
1 ∣B

n
1E)σ̄∣Ω

≥ H̃↑α(A
n
1X

n
1D

n
1 ∣B

n
1E)σ̄∣Ω −max

xn1 ∈Ω
Hα(D

n
1 )σ̄∣xn1

(A.45)

For xn1 ∈ Ω, we have

Hα(D
n
1 )σ̄∣xn1

≤H(Dn
1 )σ̄∣xn1

≤
n

∑
k=1

H(Dk)τxk

=
n

∑
k=1

max(f) − f(δxk)

= nmax(f) − nf(freq(xn1))

≤ nmax(f) − nh. (A.46)

We can get rid of the conditioning on the right-hand side of Eq. A.45 by using [DFR20,
Lemma B.5]

H̃↑α(A
n
1X

n
1D

n
1 ∣B

n
1E)σ̄∣Ω ≥ H̃↑α(A

n
1X

n
1D

n
1 ∣B

n
1E)σ̄ −

α

α − 1 log 1
Prσ(Ω)

. (A.47)
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We now show that the channels M̄′
k satisfy the second condition in Theorem 3.12. For an

arbitrary k ∈ [n] and a sequence of channels N i ∈ {M̄i,M̄′
i} for every 1 ≤ i < k, let

ηAk1Bk1Xk
1D

k
1E

= M̄′
k ○ N k−1⋯ ○N 1(ρ

(0)
R0E

).

For this state, we have

I(Ak−1
1 Dk−1

1 ∶ Bk∣B
k−1
1 E)η = I(A

k−1
1 ∶ Bk∣B

k−1
1 E)η + I(D

k−1
1 ∶ Bk∣A

k−1
1 Bk−1

1 E)η

= 0

where I(Ak−1
1 ∶ Bk∣Bk−1

1 E)η = 0 because of the condition in Eq. 3.74, and I(Dk−1
1 ∶

Bk∣Ak−1
1 Bk−1

1 E)η = 0 since Xk−1
1 and hence Dk−1

1 are determined by Ak−1
1 Bk−1

1 . This im-
plies that for this state Ak−1

1 Dk−1
1 ↔ Bk−1

1 E ↔ Bk. Thus, the maps M̄k and M̄′
k satisfy

the conditions required for applying Theorem 3.12. Specifically, we can use the bounds in
Eq. 3.59 and 3.63 for bounding α-conditional Rényi entropy in Eq. A.47

H̃↑α(A
n
1X

n
1D

n
1 ∣B

n
1E)σ̄

≥ H̃↑α(A
n
1D

n
1 ∣B

n
1E)σ̄

≥
n

∑
k=1

inf
ωRk−1R̃k−1

H̃↓α(AkDk∣BkR̃k−1)M̄′
k
(ω) −

α

α − 1n log (1 + δ (eα−1
α

2 log(∣A∣∣D∣∣B∣) − 1)) . (A.48)

The analysis in the proof of [DF19, Proposition V.3] shows that the first term above can be
bounded as

inf
ωRk−1R̃k−1

H̃↓α(AkDk∣BkR̃k−1)M̄′
k
(ω)

≥Max(f) − (α − 1) log(2)
2 (log(2∣A∣2 + 1) + log(2)

√
2 +Var(f))

2
− (α − 1)2Kα

(A.49)

Combining Eq. A.45, A.46, A.47, A.48 and A.49, we have

H̃↑α(A
n
1X

n
1 ∣B

n
1E)σ̄∣Ω ≥ nh −

(α − 1) log(2)
2 (log(2∣A∣2 + 1) + log(2)

√
2 +Var(f))

2
− n(α − 1)2Kα

−
α

α − 1n log (1 + δ (eα−1
α

2 log(∣A∣∣D∣∣B∣) − 1)) − α

α − 1 log 1
Prσ(Ω)

.

(A.50)

Plugging this into Eq. A.40, we get

Hε2+ε3
min (An1 ∣B

n
1E)ρ∣Ω ≥ nh −

(α − 1) log(2)
2 (log(2∣A∣2 + 1) + log(2)

√
2 +Var(f))

2
− n(α − 1)2Kα

−
α

α − 1n log (1 + δ (eα−1
α

2(log(∣A∣∣B∣)+max(f)−min(f)+1) − 1))

−
α

α − 1nzβ(ε, δ) −
1

α − 1 (α log 1
Prρ(Ω) − ε1

+ g1(ε3, ε2) +
αg0(ε1)

β − 1 ) .

(A.51)
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where we have used Prρ̃(Ω) ≥ Prρ(Ω) − ε1 since 1
2 ∥ρ − ρ̃∥1 ≤ P (ρ,ρ̃) ≤ ε1. Note that the

probability of Ω under the auxiliary state σ cancels out. �
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Appendix B

Appendices for Chapter 4

B.1. Proof of Theorem 4.3
In this section, we formally prove the lower bound on the smooth min-entropy required

for the security of QKD in Theorem 4.3 using the entropy accumulation theorem (EAT).
In Section 4.3 (Eq. 4.22 and 4.23), we showed that ρ′Xn

1 Θn1An1
∶= ¯̃ρXn

1 Θn1An1 ∣Ω and σXn
1 Θn1An1 =

(ρ̂
(ε+δ)
XΘA)

⊗n
is such that

1
2 ∥ρ′Xn

1 Θn1An1
− ρ̄Xn

1 Θn1An1 ∣Ω∥1
≤
ε2f
2 (B.1)

and

Dmax(ρ
′
Xn

1 Θn1An1
∣∣σXn

1 Θn1An1 ) ≤ nh(ε + δ) + log 1
Prρ(Ω) − εδqu

. (B.2)

Fix an arbitrary strategy for Eve. Let ΦQKD ∶Xn
1 Θn

1A
n
1 →Xn

1 Y
n

1 X̂SĈn
1 Θn

1 Θ̂n
1STE be the map

applied by Alice, Bob and Eve on the states produced by Alice during the QKD protocol.
In order to prove security for the BB84 protocol, we need a lower bound on the following
smooth min-entropy of ΦQKD(ρ̄)

Hν
min(XS ∣ETΘn

1 Θ̂n
1)ΦQKD(ρ̄)∣Υ

for some ν ≥ 0. In [MR22, Appendix A], it is shown that it is sufficient to show a lower
bound for the smooth min-entropy of the final state of the protocol conditioned on the event
Υ′′ when the protocol uses perfect source states. The arguments mentioned there are also
valid for our case, which is why we bound the smooth min-entropy

Hν
min(XS ∣ETΘn

1 Θ̂n
1)ΦQKD(ρ̄)∣Υ′′



in Theorem 4.3(1).

Using the data processing inequality and Eq. B.2, we see that

Dmax(ΦQKD(ρ′Xn
1 Θn1An1

)∣∣ΦQKD(σXn
1 Θn1An1 )) ≤ nh(ε + δ) + log 1

Prρ(Ω) − εδqu
. (B.3)

Note that ΦQKD(ρ′Xn
1 Θn1An1

) and ΦQKD(σXn
1 Θn1An1 ) are the states that are produced at the end

of the protocol if Alice’s source were to produce the states ρ′Xn
1 Θn1An1

and σXn
1 Θn1An1 respec-

tively. The states ΦQKD(ρ′Xn
1 Θn1An1

) and ΦQKD(σXn
1 Θn1An1 ) also contain all the corresponding

classical variables as the real protocol state ΦQKD(ρ̄Xn
1 Θn1An1 ∣Ω). In particular, the event Υ′′

is well-defined (defined using classical variables) for both of these states.

Using Lemma A.14 and Eq. B.1, we have that the final states conditioned on the event
Υ′′ satisfy

1
2 ∥ΦQKD(ρ̄Xn

1 Θn1An1 )∣Ω∧Υ′′ −ΦQKD(ρ′Xn
1 Θn1An1

)∣Υ′′∥
1
≤

ε2f
Prρ̄(Υ′′∣Ω)

(B.4)

where Prρ̄(Υ′′∣Ω) is the probability for the event Υ′′ for the state ΦQKD(ρ̄Xn
1 Θn1An1 ∣Ω)

(2). Using
the Fuchs-van de Graaf inequality, we can transform this to a purified distance bound

P (ΦQKD(ρ̄Xn
1 Θn1An1 )∣Ω∧Υ′′ ,ΦQKD(ρ′Xn

1 Θn1An1
)∣Υ′′) ≤

√
2

Prρ̄(Υ′′∣Ω)
εf . (B.5)

Let d ∶= Dmax(ΦQKD(ρ′Xn
1 Θn1An1

)∣∣ΦQKD(σXn
1 Θn1An1 )). We have proven an upper bound on d in

Eq. B.3. By definition of Dmax, we have

ΦQKD(ρ′Xn
1 Θn1An1

) ≤ edΦQKD(σXn
1 Θn1An1 ).

Conditioning both sides on the event Υ′′ implies that

Pr
ρ′
(Υ′′)ΦQKD(ρ′Xn

1 Θn1An1
)∣Υ′′ ≤ ed Pr

σ
(Υ′′)ΦQKD(σXn

1 Θn1An1 )∣Υ′′

where Prρ′(Υ′′) and Prσ(Υ′′) are the probability for Υ′′ for the states ΦQKD(ρ′Xn
1 Θn1An1

) and
ΦQKD(σXn

1 Θn1An1 ) respectively. Therefore, we have

Dmax(ΦQKD(ρ′Xn
1 Θn1An1

)∣Υ′′ ∣∣ΦQKD(σXn
1 Θn1An1 )∣Υ′′) ≤ d + log Prσ(Υ′′)

Prρ′(Υ′′)
.

(1)The arguments in [MR22, Appendix A] can also be modified to show that it is sufficient to show that
Pr(Υ′′) ∥ρfKAE′ − τKA

⊗ ρfE′∥
1
is small, where KA is Alice’s key and ρf is the state produced at the end of

the protocol conditioned on not aborting, to prove the security of QKD.
(2)We abuse notation while writing the probability this way since the state it is evaluated on is

ΦQKD(ρ̄Xn
1 Θn

1Q
n
1 ∣Ω), while we simply use the subscripts ρ̄ for P . We also write probabilities this way for

the state ΦQKD(ρ′Xn
1 Θn

1Q
n
1
) and ΦQKD(σXn

1 Θn
1Q

n
1
). This is done for the sake of clarity.
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Together, with Eq. B.5 for εpa ∶= ( 2
Prρ̄(Υ′′∣Ω))

1
2
εf , we have that

D
εpa
max(ΦQKD(ρ̄Xn

1 Θn1An1 )∣Ω∧Υ′′ ∣∣ΦQKD(σXn
1 Θn1An1 )∣Υ′′) ≤ d + log Prσ(Υ′′)

Prρ′(Υ′′)
. (B.6)

Let ε1, ε2, ε3 > 0 be arbitrary parameters. We have

H
εpa+ε1+2(ε2+ε3)
min (XS ∣EΘn

1 Θ̂n
1T )ΦQKD(ρ̄)∣Ω∧Υ′′

=H
εpa+ε1+2(ε2+ε3)
min (X̄n

1 ∣EΘn
1 Θ̂n

1T )ΦQKD(ρ̄)∣Ω∧Υ′′

≥H
εpa+ε1
min (X̄n

1 Ȳ
n

1 ∣EΘn
1 Θ̂n

1T )ΦQKD(ρ̄)∣Ω∧Υ′′ −H
ε2
max(Ȳ

n
1 ∣X̄n

1EΘn
1 Θ̂n

1T )ΦQKD(ρ̄)∣Ω∧Υ′′ − 3g0(ε3)

≥H
εpa+ε1
min (X̄n

1 Ȳ
n

1 ∣EΘn
1 Θ̂n

1)ΦQKD(ρ̄)∣Ω∧Υ′′ − log ∣T ∣ −Hε2
max(Ȳ

n
1 ∣X̄n

1EΘn
1 Θ̂n

1T )ΦQKD(ρ̄)∣Ω∧Υ′′ − 3g0(ε3)

(B.7)

where in the first line we have used the fact that given Θn
1 and Θ̂n

1 , one can figure out the
set S and then X̄n

1 = XS(⊥)Sc (see Table 4.1 for definition of the registers), in the second
line we have used the chain rule for smooth min-entropy [VDTR13, Theorem 15] and in
the last line we have used the dimension bound. We have used the chain rule here to reduce
our proof to bounding an entropy, which in the perfect source case, can be bound using
entropy accumulation [DFR20, Section 5.1].

Now, we can use Lemma 3.5 to derive

H
εpa+ε1
min (X̄n

1 Ȳ
n

1 ∣EΘn
1 Θ̂n

1)ΦQKD(ρ̄)∣Ω∧Υ′′

≥ H̃↑α(X̄
n
1 Ȳ

n
1 ∣EΘn

1 Θ̂n
1)ΦQKD(σ)∣Υ′′

−
α

α − 1D
εpa
max(ΦQKD(ρ̄Xn

1 Θn1Qn1 )∣Ω∧Υ′′ ∣∣ΦQKD(σXn
1 Θn1Qn1 )∣Υ′′) −

g1(ε1, εpa)

α − 1
≥ H̃↑α(X̄

n
1 Ȳ

n
1 ∣EΘn

1 Θ̂n
1)ΦQKD(σ)∣Υ′′

−
α

α − 1d −
α

α − 1 log Prσ(Υ′′)

Prρ′(Υ′′)
−
g1(ε1, εpa)

α − 1 (B.8)

Thus, we have reduced the problem to lower bounding α-Rényi conditional entropy for
the QKD protocol in Protocol 4.1, where Alice’s source produces noisy BB84 states. We
can bound this conditional entropy using the entropy accumulation theorem. The only
difference in the following arguments from [DFR20, Section 5.1] is that we need to employ
entropy accumulation for α-Rényi entropies (also see [GLvH+22]).

Firstly, note that we can use source purification for the state ΦQKD(σ), that is, we can
imagine that the state ΦQKD(σ) was produced by the following procedure:

(1) Alice prepares n Bell states (Φ+)⊗n
Ān1A

n
1
.
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(2) For each i ∈ [n], Alice measures the qubit Āi in the basis Θi, which is chosen to be Z
with probability (1−µ) and otherwise is chosen to be X. The measurement result is
labelled Xi.

(3) She then applies the 2(ε+ δ)−depolarising channel to each of the qubits Ai for i ∈ [n]

and sends them over the channel to Bob.
We can imagine that the source state is prepared in this fashion. The initial state for EAT
will be represented by the registers Ān1An1E, which contain the state produced after Eve
forwards the state produced above by Alice to Bob. We can now define the EAT maps
Mi ∶ Āni A

n
i → Āni+1A

n
i+1X̄iȲiΘiΘ̂iCi, where the registers Θi and Θ̂i are produced by randomly

sampling according to the probabilities in the protocol, X̄i and Ȳi are produced according
to the measurements chosen in the protocol and the source preparation procedure above,
and Ci is defined as in Table 4.1.

Note that by conditioning on the event Υ′′, we are requiring that q = freq(Cn
1 ) satisfies

q(1) ≤ eµ2. It is shown in [DFR20, Proof of Claim 5.2] that there exists an affine min-
tradeoff function f , such that Cn

1 given Υ′′ satisfies f(freq(Cn
1 )) ≥ (1−2µ+µ2) log(2)−h(e).

Using the entropy accumulation theorem [DFR20, Proposition 4.5], we get

H̃↑α(X̄
n
1 Ȳ

n
1 ∣EΘn

1 Θ̂n
1)ΦQKD(σδ)∣Υ′′ ≥ n((1 − 2µ + µ2) log(2) − h(e)) − nα − 1

4 V 2 −
α

α − 1 log 1
Prσ(Υ′′)

(B.9)

where V ∶= 2⌈∥∇f∥∞⌉ + 2 log(1 + 2∣X ∣2) = 2
µ2 log 1−e

e + 2 log(1 + 2∣X ∣2)(3) and 1 < α < 1 + 2
V .

Combining Eq. B.8 and B.9, we get

H
εpa+ε1
min (X̄n

1 Ȳ
n

1 ∣EΘn
1 Θ̂n

1)ΦQKD(ρ̄)∣Ω∧Υ′′

≥ n((1 − 2µ + µ2) log(2) − h(e)) − nα − 1
4 V 2 −

α

α − 1d −
α

α − 1 log 1
Prρ′(Υ′′)

−
g1(ε1, εpa)

α − 1

≥ n((1 − 2µ + µ2) log(2) − h(e)) − nα − 1
4 V 2 −

α

α − 1nh(ε + δ) −
α

α − 1 log 1
Prρ(Ω) − εδqu

−
α

α − 1 log 1
Prρ̄(Υ′′∣Ω) −

2εδqu
Prρ(Ω)

−
g1(ε1, εpa)

α − 1

≥ n((1 − 2µ + µ2) log(2) − h(e)) − nα − 1
4 V 2 −

α

α − 1nh(ε + δ)

−
α

α − 1 (log 1
Prρ(Ω ∧Υ′′) − 2εδqu

+ 1) − g1(ε1, εpa)

α − 1 (B.10)

(3)It should be noted that this term can be improved using [DF19].
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where we have used Eq. B.1, εf = 2
√

εδqu
Prρ(Ω) , Prρ(Ω ∧Υ′′) = Prρ(Ω)Prρ̄(Υ′′∣Ω) and Prρ(Ω) ≥

Prρ(Ω∧Υ′′) > 2εδqu to simplify the result. It should be noted that the probability Prσ(Υ′′) of
the auxiliary state cancels out. Since, we restrict ε and δ to the region, where h(ε + δ) < 1√

2 ,
we can choose

α ∶= 1 +
2
√

2h(ε + δ)
V

(B.11)

which gives us the bound

H
εpa+ε1
min (X̄n

1 Ȳ
n

1 ∣EΘn
1 Θ̂n

1)ΦQKD(ρ̄)∣Ω∧Υ′′ ≥ n((1 − 2µ + µ2) log(2) − h(e) − V
√

2h(ε + δ))

−
V

√
2h(ε + δ)

(log 1
Prρ(Ω ∧Υ′′) − 2εδqu

+ 1) − g1(ε1, εpa)

2
√

2h(ε + δ)
V. (B.12)

We also need to bound Hε2max(Ȳ n
1 ∣X̄n

1EΘn
1 Θ̂n

1T )ΦQKD(ρ)∣Ω∧Υ′′ in Eq. B.7. The bound and the
proof for this bound are the same as in [DFR20, Claim 5.2]. We have for β ∈ (1,2) that

Hε2
max(Ȳ

n
1 ∣X̄n

1EΘn
1 Θ̂n

1T )ΦQKD(ρ̄)∣Ω∧Υ′′

≤Hε2
max(Ȳ

n
1 ∣Θn

1 Θ̂n
1)ΦQKD(ρ̄)∣Ω∧Υ′′

≤ H̃↓1
β

(Ȳ n
1 ∣Θn

1 Θ̂n
1)ΦQKD(ρ̄)∣Ω∧Υ′′ +

g0(ε2)

β − 1

≤ H̃↓1
β

(Ȳ n
1 ∣Θn

1 Θ̂n
1)ΦQKD(ρ̄) +

β

β − 1 log 1
Prρ̄(Ω ∧Υ′′)

+
g0(ε2)

β − 1

=
β

β − 1 log ∑
θn1 ,θ̂

n
1

P (θn1 , θ̂
n
1 )e

(1− 1
β
)H̃↓1

β

(Ȳ n1 ∣θn1 ,θ̂n1 )
+

β

β − 1 log 1
Prρ̄(Ω ∧Υ′′)

+
g0(ε2)

β − 1

where the first line follows from the data processing inequality for the smooth max-entropy,
second line follows from Lemma 2.23, third line using [DFR20, Lemma B.6]. Let the random
variable Z denote the number of i ∈ [n], such that Θi = Θ̂i = 1. Then, we have the following
inequalities for the first term in the bound above

β

β − 1 log ∑
θn1 ,θ̂

n
1

P (θn1 , θ̂
n
1 )e

(1− 1
β
)H̃↓1

β

(Ān1 ∣θn1 ,θ̂n1 )
≤

β

β − 1 log ∑
θn1 ,θ̂

n
1

P (θn1 , θ̂
n
1 )e

(1− 1
β
)Zθn1 ,θ̂n1

=
β

β − 1 log
n

∑
z=0

(
n

z
)µ2z(1 − µ2)n−ze(1− 1

β
)z

= n
β

β − 1 log (1 − µ2 + e(1− 1
β
)µ2)

= nµ2 β

(β − 1) (e(1− 1
β
) − 1)

≤ nµ2 (1 + (β − 1)
β

)
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where we use Zθn1 ,θ̂n1 to denote the fact that the value of random variable Z is fixed by θn1
and θ̂n1 , in the second line we transform the expectation over θn1 and θ̂n1 into an expectation
over Z, in the third line we use the binomial theorem, in the fourth line we use the fact that
ln(1+x) ≤ x for all x > −1, and in the last line we use the fact that ex ≤ 1+x+x2 for x ∈ (0,1)
and that for β > 1 the term (1 − 1

β) lies in this range. Thus, we get that for β ∈ (1,2),

Hε2
max(Ȳ

n
1 ∣X̄n

1EΘn
1 Θ̂n

1T )ΦQKD(ρ̄)∣Ω∧Υ′′ ≤ nµ
2 +

(β − 1)
β

nµ2 +
β

β − 1 log 1
Prρ̄(Ω ∧Υ′′)

+
g0(ε2)

β − 1 .

Choosing β = 1 + 1√
n
and using the coarse bounds 1 < β < 2, gives us

Hε2
max(Ȳ

n
1 ∣X̄n

1EΘn
1 Θ̂n

1T )ΦQKD(ρ̄)∣Ω∧Υ′′ ≤ nµ
2 +

√
n(µ2 + 2 log 1

Prρ̄(Ω ∧Υ′′)
+ g0(ε2)) . (B.13)

Combining Eq. B.7, B.12, and B.13, we get

H
εpa+ε1+2(ε2+ε3)
min (XS ∣EΘn

1 Θ̂n
1T )ΦQKD(ρ̄)∣Ω∧Υ′′

≥ n((1 − 2µ) log(2) − h(e) − µ2(1 − log(2)) − V
√

2h(ε + δ))

−
√
n(µ2 + 2 log 1

Prρ̄(Ω ∧Υ′′)
+ g0(ε2)) −

V
√

2h(ε + δ)
(log 1

Prρ̄(Ω ∧Υ′′) − 2εδqu
+ 1)

−
g1(ε1, εpa)

2
√

2h(ε + δ)
V − log ∣T ∣ − 3g0(ε3) (B.14)

where the parameters ε1, ε2, ε3 > 0 are arbitrary, and

εpa = 2(
2εδqu

Prρ̄(Ω ∧Υ′′)
)

1/2

.

For an arbitrary ε′ > 0, we can set ε1 = ε′

2 and ε2 = ε3 = ε′

8 to derive the result in the
theorem.
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Appendix C

Appendices for Chapter 5

C.1. Additional lemmas
The following lemma provides a tighter bound for the distance as compared to Lemma 5.3.

It is proven in [DBWR14, Lemma B.3]. We could replace the use of Lemma 5.3 in Theo-
rem 5.8 and 5.10 with the following. This would slightly improve some constants. We use
Lemma 5.3 instead for notational clarity, since we do not need to keep track of the additional
unitary introduced in the following lemma.

Lemma C.1. For a normalised state ρAB and a subnormalised state ρ̃AB such that
P (ρAB, ρ̃AB) ≤ ε, there exists a unitary UB on the register B such that the state

ηAB ∶= ρ
1/2
B UBρ̃

−1/2
B ρ̃ABρ̃

−1/2
B U †

Bρ
1/2
B (C.1)

(ρ̃−1/2
B is the Moore-Penrose pseudo-inverse) satisfies P (ρAB, ηAB) ≤ 2ε. Note that if ρ̃B is

full rank, then ηB = ρB.

Proof. Note that since ρAB is normalised, we have F (ρ̃AB, ρAB) ≥ 1 − ε2. Let ∣ρ̃⟩ABR be an
arbitrary purification of ρ̃AB. Let UB be any unitary for now and let ηAB be defined as in
Eq. C.1 above. We will choose UB so that F (ρ̃AB, ηAB) is large.

Observe that the pure state ∣η⟩ABR ∶= ρ
1/2
B UBρ̃

−1/2
B ∣ρ̃⟩ABR is a purification of ηAB. Using

Uhlmann’s theorem [Wat18, Theorem 3.22], we have

F (ρ̃AB, ηAB) ≥ ∣ ⟨ρ̃∣η⟩ ∣2

= ∣⟨ρ̃∣ρ
1/2
B UBρ̃

−1/2
B ∣ρ̃⟩∣

2

= ∣tr(ρ1/2
B UBρ̃

−1/2
B ρ̃ABR)∣

2



= ∣tr(UBρ̃1/2
B ρ

1/2
B )∣

2
.

Say the polar decomposition of ρ̃1/2
B ρ

1/2
B = VB ∣ρ̃

1/2
B ρ

1/2
B ∣. We can now select UB to be V †

B, so
that

F (ρ̃AB, ηAB) ≥ (tr ∣ρ̃1/2
B ρ

1/2
B ∣)

2

= F (ρ̃B, ρB)

≥ 1 − ε2 (C.2)

where we have used F (ρ̃B, ρB) ≥ F (ρ̃AB, ρAB). Further, we have

P (ρ̃AB, ηAB) =
√

1 − F∗(ρ̃AB, ηAB)

≤
√

1 − F (ρ̃AB, ηAB)

≤ ε.

Using the triangle inequality, for this choice of UB, we get

P (ρAB, ηAB) ≤ P (ρAB, ρ̃AB) + P (ρ̃AB, ηAB)

≤ 2ε.

�

C.2. Classical approximate chain rule for the relative
entropy

Lemma C.2. Let p and p′ be probability distributions over X . Then, for a function f ∶ X →
R, we have

∣EX∼p[f(X)] −EX∼p′[f(X)]∣ ≤ max
x∈X

∣f(x)∣ ∥p − p′∥1 . (C.3)

Proof.

∣EX∼p[f(X)] −EX∼p′[f(X)]∣ = ∣ ∑
x∈X

p(x)f(x) − ∑
x∈X

p′(x)f(x)∣

= ∣ ∑
x∈X

(p(x) − p′(x))f(x)∣

≤ ∑
x∈X

∣p(x) − p′(x)∣∣f(x)∣

≤ max
x∈X

∣f(x)∣ ∥p − p′∥1

�
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We will call the following lemma an approximate chain rule for the relative entropy. It allows
us to switch the probability distribution pAB in the term D(pAB ∣∣pBqA∣B) of the chain rule
for D(pAB ∣∣qAB) to D(p′AB ∣∣p

′
BqA∣B), where p ≈ε p′ while incurring a penalty which depends

only on the size of the register A.

Lemma C.3. Suppose that δ > 0 and qAB is a probability distribution over A×B such that for
all a,b ∈ A×B, we have q(a∣b) ≥ δ. Then, for 0 < ε < 1

2 and a p′AB such that 1
2 ∥pAB − p′AB∥1 ≤ ε,

we have that

D(pAB ∣∣qAB) ≤D(pB ∣∣qB) +D(p′AB ∣∣p
′
BqA∣B) + z(ε, δ) (C.4)

where z(ε, δ) ∶= h(2ε) + 6ε log 1
δ + 4ε log ∣A∣. Equivalently, we have

D(pAB ∣∣qAB) ≤D(pB ∣∣qB) + inf
∥p′AB−pAB∥1≤2ε

D(p′AB ∣∣p
′
BqA∣B) + z(ε, δ) (C.5)

Proof. If supp(pB) /⊆ supp(qB), then the right-hand side is infinite and the identity is
trivially true. We suppose supp(pB) ⊆ supp(qB) here on.

We will show that for every p′AB, which is ε-close to pAB the right-hand side in Eq. C.4
is greater than the left-hand side. Classically, we have the chain rule

D(pAB ∣∣qAB) =D(pB ∣∣qB) +EB∼pB[D(pA∣B ∣∣qA∣B)]. (C.6)

Note that both the above terms are finite (q(a∣b) ≥ δ is given). We will bound
maxbD(pA∣b∣∣qA∣b) and then use Lemma C.2 to create a bound for the expectation in terms
of p′. For a given b ∈ B, we have

∣D(pA∣b∣∣qA∣b)∣ = ∣∑
a

p(a∣b) log p(a∣b)
q(a∣b)

∣

≤ ∣∑
a

p(a∣b) log p(a∣b)∣ + ∣∑
a

p(a∣b) log 1
q(a∣b)

∣

=H(A∣B = b)p +∑
a

p(a∣b) log 1
q(a∣b)

≤ log(∣A∣) + log 1
δ
.

Now, using Lemma C.2,

EB∼pB[D(pA∣B ∣∣qA∣B)] ≤ EB∼p′B[D(pA∣B ∣∣qA∣B)] + 2ε(log(∣A∣) + log 1
δ
) . (C.7)
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Finally, we need to change the pA∣B in D(pA∣B ∣∣qA∣B) to p′
A∣B.

D(pA∣b∣∣qA∣b) = −H(A∣B = b)p +EA∼pA∣b [log 1
q(A∣b)

]

≤ −H(A∣B = b)p′ + h(
1
2 ∥pA∣b − p

′
A∣b∥1

) +
1
2 ∥pA∣b − p

′
A∣b∥1

log(∣A∣)

+EA∼p′
A∣b

[log 1
q(A∣b)

] + ∥pA∣b − p
′
A∣b∥1

log 1
δ

=D(p′A∣b∣∣qA∣b) + h(
1
2 ∥pA∣b − p

′
A∣b∥1

) +
1
2 ∥pA∣b − p

′
A∣b∥1

(2 log 1
δ
+ log(∣A∣))

where we used the Fannes-Audenaert continuity bound [Wil13, Theorem 11.10.2] and
Lemma C.2 in the second line. Taking the expectation over p′B, we get

EB∼p′B[D(pA∣B ∣∣qA∣B)]

≤ EB∼p′B [D(p′A∣B ∣∣qA∣B) + h(
1
2 ∥pA∣B − p

′
A∣B∥1

) +
1
2 ∥pA∣B − p

′
A∣B∥1

(2 log 1
δ
+ log(∣A∣))]

≤ EB∼p′B [D(p′A∣B ∣∣qA∣B)] + h(
1
2
∥p′BpA∣B − p

′
AB∥1) +

1
2
∥p′BpA∣B − p

′
AB∥1 (2 log 1

δ
+ log ∣A∣)

≤ EB∼p′B [D(p′A∣B ∣∣qA∣B)] + h(2ε) + 2ε(2 log 1
δ
+ log ∣A∣)

=D(p′AB ∣∣p
′
BqA∣B) + h(2ε) + 2ε(2 log 1

δ
+ log ∣A∣)

where we have used the fact that if ∥pAB − p′AB∥1 ≤ ε, then ∥p′BpA∣B − p
′
AB∥1 ≤ 2ε. This can

be derived using the triangle inequality. Putting this in Eq. C.7, we get

EB∼pB[D(pA∣B ∣∣qA∣B)] ≤D(p′AB ∣∣p
′
BqA∣B) + h(2ε) + 6ε log 1

δ
+ 4ε log ∣A∣.

Therefore, using Eq. C.6, we get

D(pAB ∣∣qAB) ≤D(pB ∣∣qB) +D(p′AB ∣∣p
′
BqA∣B) + h(2ε) + 6ε log 1

δ
+ 4ε log ∣A∣.

�

C.3. Markov chain condition for all input states implies
independence

In the following lemma, we show that if all outputs of a channel satisfy a certain Markov
chain condition with the reference registers, then under some dimension constraints the
output of the channel is independent of the input. Due to this fact, we choose to state the
unstructured approximate EAT using the independence condition for the side information
(Eq. 5.72). We expect that this lemma can be improved further.
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Lemma C.4. Let A, B and R be registers such that ∣A∣ = ∣B∣ and ∣R∣ = ∣A∣∣B∣. LetM ∶ R → C

be a channel such that for all input states ρ(0)ABR the output ρABC = M(ρ(0)) satisfies the
Markov chain A↔ B ↔ C. Then, we have that M(XR) = tr(X)ωC for some state ωC.

Proof. Since ∣R∣ = ∣A∣∣B∣, we can view R as the registers A′B′, where A ≡ A and B′ ≡ B. We
can construct the Choi matrix of this channel as

JABC =M(∣Φ⟩ ⟨Φ∣ABA′B′) (C.8)

where ∣Φ⟩ is used to denote the unnormalised maximally entangled state, i.e., ∣Φ⟩ABA′B′ ∶=

∑a,b ∣ab⟩AB ∣ab⟩A′B′ = ∣Φ⟩AA′ ⊗ ∣Φ⟩BB′ and M is viewed as a channel from A′B′ → C. Since,
all outputs ofM satisfy the Markov chain A↔ B ↔ C, we have that

JABC = JABJ
−1
B JBC

= 1A⊗1B ⋅ ∣A∣−1 1B ⋅ M(1A′ ⊗ ∣Φ⟩ ⟨Φ∣BB′)

= 1A⊗M(τA′ ⊗ ∣Φ⟩ ⟨Φ∣BB′) (C.9)

where τA′ = ∣A∣−1 1A′ is the maximally mixed state on A′. Let’s define N ∶ B′ → C as

N(XB′) =M(τA′ ⊗XB′) . (C.10)

Since, the Choi matrix is unique, we can see that

MA′B′→C = NB′→C ○ trA′ . (C.11)

Let WA′B′ be the swap unitary matrix, i.e., WA′B′ ∣ab⟩ = ∣ba⟩. Then, note that for all input
states ρABA′B′ , the output M(WA′B′ρABA′B′W †

A′B′) satisfies the Markov chain A ↔ B ↔ C

according to the hypthosis in the lemma statement. In particular, we can carry out the
above argument using the channelM(WA′B′ ⋅ W †

A′B′) and that gives us that there exists a
channel N ′

B′→C such that for all operators XA′B′

M(WA′B′XA′B′W †
A′B′) = N

′
B′→C (trA′(XA′B′)) (C.12)

which implies that

M(XA′B′) = N ′
B′→C (trA′(WA′B′XA′B′W †

A′B′))

= N ′
A′→C (trB′(XA′B′)) (C.13)

Using Eq. C.11 and C.13 for XA′B′ = σA′ ⊗ σB′ where σA′ and σB′ are arbitrary states, we
have that

NB′→C (σB′) = N ′
A′→C (σA′) (C.14)
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which implies that both of these must be equal to a constant state. Let’s call the state ωC .
Using the fact that M is trace-preserving, we then have that MA′B′→C(XA′B′) = tr(X)ωC .

�

C.4. Proof of unstructured approximate EAT with test-
ing

We follow the proof in [MFSR24], which is itself based on [DF19].

Using the orthogonal projectors defined in Eq. 5.100, further define the orthogonal pro-
jectors on the registers Ak1Bk

1

Π(ak1 ,bk1)
Ak1B

k
1
∶=

k

⊗
i=1

(Π(ai)
Ai

⊗Π(bi)
Bi

) (C.15)

for every ak1, bk1. Together these form a measurement on the registers Ak1Bk
1 .

We will also need the definitions of the following simple properties of the min-tradeoff
functions for our entropy accumulation theorem:

max(f) ∶= max
q∈P

f(q) (C.16)

min(f) ∶= min
q∈P

f(q). (C.17)

For an affine min-tradeoff function, and any two distributions q1, q2 ∈ P, we have

∣f(q1) − f(q2)∣ ≤ ∥∇f∥∞ ∥q1 − q2∥1

≤ 2 ∥∇f∥∞

which implies that max(f) −min(f) ≤ 2 ∥∇f∥∞.

Proof. We first define the sets

Ak ∶=

⎧⎪⎪
⎨
⎪⎪⎩

XAk1B
k
1E

∶XAk1B
k
1E

= ∑
ak1 ,b

k
1

Π(ak1bk1)
Ak1B

k
1
XAk1B

k
1E

Π(ak1bk1)
Ak1B

k
1

⎫⎪⎪
⎬
⎪⎪⎭

(C.18)

for every 0 ≤ k ≤ n. It should be noted that each of these sets is a unital algebra, i.e., a vector
space over the field C closed under the matrix product containing identity 1Ak1Bk1E. It is also
easy to see that

Ak ⊗ 1Ak+1Bk+1 ∶= {XAk1B
k
1E

⊗ 1Ak+1Bk+1 ∶XAk1B
k
1E

∈ Ak} ⊆ Ak+1 (C.19)

trAkBk(Ak) ∶= {XAk−1
1 Bk−1

1 E ∶XAk1B
k
1E

∈ Ak} ⊆ Ak−1. (C.20)
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Finally, it should be noted that for all operators XAk1B
k
1E

∈ Ak, we have

trXk
1
○Tk ○ ⋯ ○ T1 (X) =X. (C.21)

The above equation in particular implies that one can measure a state in Ak using the chan-
nel Tk ○⋯○T1 without disturbing the state. All the auxiliary states defined during this proof
will be contained inside an appropriate set Ak. Noting that these sets are, in fact, an al-
gebra will make it easier to see this. For example, observe that each partial state ρAk1Bk1E ∈ Ak.

Case 1: To begin, we restrict our attention to states ρAn1Bn1E, which have full rank. Let
ν ∈ (0,1) be an arbitrarily chosen small parameter. For every k ∈ [n], define the states

˜̃ρ(k,0)
Ak−1

1 Bk−1
1 ERk

∶= (1 − ν)ρ̃(k,0)
Ak−1

1 Bk−1
1 ERk

+ ντAk−1
1 Bk−1

1 ERk
(C.22)

˜̃ρ(k,1)
Ak−1

1 Bk−1
1 Xk−1

1 ERk
∶= Tk−1 ○ ⋯ ○ T1( ˜̃ρ(k,0)

Ak−1
1 Bk−1

1 ERk
) (C.23)

˜̃ρ(k)
Ak1B

k
1X

k
1E

∶= Tk ○Mk ( ˜̃ρ(k,1)
Ak−1

1 Bk−1
1 Xk−1

1 ERk
) . (C.24)

Since the maps trXi ○Ti are unital, for every k, we have

˜̃ρ(k)
Ak−1

1 Bk−1
1 E

= ˜̃ρ(k,1)
Ak−1

1 Bk−1
1 E

(C.25)

≥ ντAk−1
1 Bk−1

1 E. (C.26)

Thus, the states ˜̃ρ(k)
Ak−1

1 Bk−1
1 E

are also full rank. Moreover, we have that

˜̃ρ(k)
Ak1B

k
1E

∈ Ak. (C.27)

For each k these states satisfy
1
2 ∥ρAk1Bk1Xk

1E
− ˜̃ρ(k)

Ak1B
k
1X

k
1E

∥ =
1
2 ∥ρAk1Bk1Xk

1E
− Tk ○Mk ( ˜̃ρ(k,1)

Ak−1
1 Bk−1

1 Xk−1
1 ERk

)∥
1

=
1 − ν

2 ∥Tk ○ ⋯ ○ T1(ρAk1Bk1E) − Tk ○ ⋯ ○ T1 ○Mk (ρ̃
(k,0)
Ak−1

1 Bk−1
1 ERk

)∥
1
+ ν

≤
1 − ν

2 ∥ρAk1Bk1E −Mk (ρ̃
(k,0)
Ak−1

1 Bk−1
1 ERk

)∥
1
+ ν

≤ ε + ν. (C.28)

Now, for each k ∈ [n], we define the normalised states

ω
(k,1)
Ak−1

1 Bk−1
1 RkE

∶= ρ
1/2
Ak−1

1 Bk−1
1 E

( ˜̃ρ(k)
Ak−1

1 Bk−1
1 E

)
−1/2 ˜̃ρ(k,1)

Ak−1
1 Bk−1

1 RkE
( ˜̃ρ(k)

Ak−1
1 Bk−1

1 E
)
−1/2

ρ
1/2
Ak−1

1 Bk−1
1 E

(C.29)

and

ω
(k)
Ak1B

k
1E

∶= Mk (ω
(k,1)
Ak−1

1 Bk−1
1 RkE

) (C.30)

= ρ
1/2
Ak−1

1 Bk−1
1 E

( ˜̃ρ(k)
Ak−1

1 Bk−1
1 E

)
−1/2

trXk ○Tk ○Mk ( ˜̃ρ(k,1)
Ak−1

1 Bk−1
1 RkE

) ( ˜̃ρ(k)
Ak−1

1 Bk−1
1 E

)
−1/2

ρ
1/2
Ak−1

1 Bk−1
1 E

(C.31)
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= ρ
1/2
Ak−1

1 Bk−1
1 E

( ˜̃ρ(k)
Ak−1

1 Bk−1
1 E

)
−1/2 ˜̃ρ(k)

Ak1B
k
1E

( ˜̃ρ(k)
Ak−1

1 Bk−1
1 E

)
−1/2

ρ
1/2
Ak−1

1 Bk−1
1 E

. (C.32)

We used trXk ○Tk ○Mk = Mk above. Observe that ω(k)
Ak1B

k
1E

∈ Ak (using Eq. C.27, C.19 and
C.20). Since, we defined ˜̃ρ(k)

Ak−1
1 Bk−1

1 E
to be full rank, we have that

ω
(k)
Ak−1

1 Bk−1
1 E

= ρAk−1
1 Bk−1

1 E. (C.33)

Using Lemma 5.3, we have that
1
2 ∥ρAk1Bk1E − ω

(k)
Ak1B

k
1E

∥
1
≤ (

√
2 + 1)P (ρAk1Bk1E,

˜̃ρAk1Bk1E)

≤ (
√

2 + 1)
√

2(ε + ν)

≤ 4
√
ε + ν. (C.34)

Let δ ∈ (0,1) be a small parameter (to be set equal to ε later). Define the states

ρ
(k,δ)
AkBk

∶= (1 − δ)ρAkBk + δτAkBk . (C.35)

Finally, for every k ∈ [n], we define the states

ρ̄
(k)
Ak1B

k
1E

∶=(1 − δ)ω(k)
Ak1B

k
1E

+ δρ
(k,δ)
AkBk

⊗ ρAk−1
1 Bk−1

1 E (C.36)

=(1 − δ)ω(k)
Ak1B

k
1E

+ δρ
(k,δ)
AkBk

⊗ ω
(k)
Ak−1

1 Bk−1
1 E

(C.37)

Also, define ρ̄(0)E ∶= ρE. For each 0 ≤ k ≤ n, the state ρ̄(k)
Ak1B

k
1E

∈ Ak using Eq. C.19. We have
taken a slight diversion from the proof of Theorem 5.8 in defining the above state. This has
been done to ensure we are able to bound the entropy in Eq. C.72.

Let ∆k ∶ Rk → AkBk be the map which traces out the register Rk and outputs ρ(k,δ)AkBk
.

Further, let

Mδ
k ∶= (1 − δ)Mk +δ∆k. (C.38)

Note that similar toMk,Mδ
k also satisfies

Mδ
k = trXk ○Tk ○M

δ
k . (C.39)

Then, we have that

ρ̄
(k)
Ak1B

k
1E

= (1 − δ)ω(k)
Ak1B

k
1E

+ δρ
(k,δ)
AkBk

⊗ ω
(k)
Ak−1

1 Bk−1
1 E

= ((1 − δ)Mk +δ∆k) (ω
(k,1)
Ak−1

1 Bk−1
1 RkE

)

=Mδ
k (ω

(k,1)
Ak−1

1 Bk−1
1 RkE

) . (C.40)

We also have that
1
2 ∥ρ̄

(k)
Ak1B

k
1E

− ρAk1Bk1E∥1
≤ 4

√
ε + ν + δ (C.41)
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and by the definition of ρ̄(k)
Ak1B

k
1E

δ2τAkBk ⊗ ρAk−1
1 Bk−1

1 E ≤ ρ̄
(k)
Ak1B

k
1E

(C.42)

Using Corollary 5.6, gives us that

D(ρAk1Bk1E ∣∣ρ̄
(k)
Ak1B

k
1E

) ≤
8
√
ε + ν + 2δ

1 − δ2/(∣A∣∣B∣)2 log ∣A∣∣B∣

δ
. (C.43)

We define the above bound as z(ε + ν, δ). Using Lemma 5.4, for the normalised auxiliary
state

σAn1Bn1E

∶= ∫
∞

−∞
dtβ0(t)

n−1
∏
k=0

[(ρ̄
(k)
Ak1B

k
1E

)
1−it

2
(ρ̄

(k+1)
Ak1B

k
1E

)
− 1−it

2
] ⋅ ρ̄

(n)
An1B

n
1E

⋅
0
∏
k=n−1

[(ρ̄
(k+1)
Ak1B

k
1E

)
− 1+it

2
(ρ̄

(k)
Ak1B

k
1E

)
1+it

2
]

(C.44)

we have that

Dm(ρAn1Bn1E ∣∣σAn1Bn1E) ≤ nz(ε + ν, δ) (C.45)

and

σAk1Bk1E

= ∫
∞

−∞
dtβ0(t)

k−1
∏
j=0

[(ρ̄
(j)
Aj1B

j
1E

)

1−it
2

(ρ̄
(j+1)
Aj1B

j
1E

)
− 1−it

2
] ⋅ ρ̄

(k)
Ak1B

k
1E

⋅
0
∏
j=k−1

[(ρ̄
(j+1)
Aj1B

j
1E

)
− 1+it

2
(ρ̄

(j)
Aj1B

j
1E

)

1+it
2

]

(C.46)

=Mδ
k (∫

∞

−∞
dtβ0(t)

k−1
∏
j=0

[(ρ̄
(j)
Aj1B

j
1E

)

1−it
2

(ρ̄
(j+1)
Aj1B

j
1E

)
− 1−it

2
] ⋅ ω

(k,1)
Ak−1

1 Bk−1
1 RkE

⋅
0
∏
j=k−1

[(ρ̄
(j+1)
Aj1B

j
1E

)
− 1+it

2
(ρ̄

(j)
Aj1B

j
1E

)

1+it
2

])

(C.47)

for all k ∈ [n]. Let σ(k,0)
Ak−1

1 Bk−1
1 RkE

be the input state forMδ
k above, so that

σAk1Bk1E =Mδ
k (σ

(k,0)
Ak−1

1 Bk−1
1 RkE

) (C.48)

It is also easy to see using the properties of the algebras Ak that σAk1Bk1E ∈ Ak for each k.
Thus, we can extend the state σ as follows using measurements (Ti)i

σAn1Bn1Xn
1 E

= Tn ○ ⋯ ○ T1 (σAn1Bn1E) .

Note that the partial state

σAk1Bk1Xk
1E

= trAn
k+1B

n
k+1X

n
k+1

(Tn ○ ⋯ ○ T1 (σAn1Bn1E))

= Tk ○ ⋯ ○ T1 (trAn
k+1B

n
k+1X

n
k+1

(Tn ○ ⋯ ○ Tk+1 (σAn1Bn1E)))

= Tk ○ ⋯ ○ T1 (σAk1Bk1E) (C.49)
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= Tk ○M
δ
k ○Tk−1 ○ ⋯ ○ T1 (σ

(k,0)
Ak−1

1 Bk−1
1 RkE

) (C.50)

Let’s define µ ∶= z(ε + ν, δ)1/3. Using the substate theorem (Theorem 2.26), we get the
following bound from the above relative entropy bound

Dµ
max(ρAn1Bn1E ∣∣σAn1Bn1E) ≤ nµ +

1
µ2 + log 1

1 − µ2 (C.51)

which using data processing also implies that

Dµ
max(ρAn1Bn1Xn

1 E
∣∣σAn1Bn1Xn

1 E
) ≤ nµ +

1
µ2 + log 1

1 − µ2 (C.52)

The bound above implies that there exists a state ρ′An1Bn1Xn
1 E

, which is also classical on Xn
1

such that

P (ρAn1Bn1Xn
1 E
, ρ′An1Bn1Xn

1 E
) ≤ µ (C.53)

and

ρ′An1Bn1Xn
1 E

≤
e
nµ+ 1

µ2

1 − µ2 σAn1Bn1Xn
1 E
. (C.54)

The registers Xn
1 for ρ′ can be chosen to be classical, since the channel measuring Xn

1 only
decreases the distance between ρ′ and ρ, and the new state produced would also satisfy
Eq. C.54. As the registers Xn

1 are classical for both σ and ρ′, we can condition these states
on the event Ω. We will call the probability of the event Ω for the state σ and ρ′ Pσ(Ω) and
Pρ′(Ω) respectively. Using Lemma A.14 and the Fuchs-van de Graaf inequality, we have

P (ρAn1Bn1Xn
1 E∣Ω, ρ

′
An1B

n
1X

n
1 E∣Ω) ≤ 2

√
µ

Pρ(Ω)
. (C.55)

Conditioning Eq. C.54 on Ω, we get

Pρ′(Ω)ρ′An1Bn1Xn
1 E∣Ω ≤

e
nµ+ 1

µ2

1 − µ2 Pσ(Ω)σAn1Bn1Xn
1 E∣Ω. (C.56)

Together, the above two equations imply that

Dµ′

max(ρAn1Bn1Xn
1 E∣Ω∣∣σAn1Bn1Xn

1 E∣Ω) ≤ nµ +
1
µ2 + log Pσ(Ω)

Pρ′(Ω)
+ log 1

1 − µ2 (C.57)

for µ′ ∶= 2
√

µ
Pρ(Ω) .

For ε′ > 0 such that µ′+ε′ < 1 and α ∈ (1,2], we can plug the above in the bound provided
by Lemma 3.5 to get

Hµ′+ε′
min (An1 ∣B

n
1E)ρ∣Ω ≥ H̃↑α(A

n
1 ∣B

n
1E)σ∣Ω −

α

α − 1nµ

−
1

α − 1 (α log Pσ(Ω)

Pρ′(Ω)
+
α

µ2 + α log 1
1 − µ2 + g1(ε

′, µ′)) . (C.58)
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Now, note that using Eq. 5.100 and C.49, and [DFR20, Lemma B.7] we have

H̃↑α(A
n
1 ∣B

n
1E)σ∣Ω = H̃↑α(A

n
1X

n
1 ∣B

n
1E)σ∣Ω . (C.59)

For every k, we introduce a register Dk of dimension ∣D∣ ∶= ⌈emax(f)−min(f)⌉ ≤ e2⌈∥∇f∥∞⌉ and
the channels Dk ∶Xk →XkDk defined as

Dk(ω) ∶= ∑
x

⟨x∣ω∣x⟩ ∣x⟩ ⟨x∣ ⊗ νx (C.60)

where for every x, the state νx is a mixture between a uniform distribution on
{1,2,⋯ , ⌊emax(f)−f(δx)⌋} and a uniform distribution on {1,2,⋯ , ⌈emax(f)−f(δx)⌉}, so
that

H(Dk)νx = max(f) − f(δx) (C.61)

where δx is the distribution with unit weight at element x. Define the state

σ̄An1Bn1Xn
1 D

n
1E

∶= Dn ○ ⋯ ○ D1(σAn1Bn1Xn
1 E

) (C.62)

Now [MFSR24, Lemma 4.5] implies that this satisfies

H̃↑α(A
n
1X

n
1 ∣B

n
1E)σ̄∣Ω ≥ H̃↑α(A

n
1X

n
1D

n
1 ∣B

n
1E)σ̄∣Ω −max

xn1 ∈Ω
Hα(D

n
1 )σ̄∣xn1

(C.63)

For xn1 ∈ Ω, we have

Hα(D
n
1 )σ̄∣xn1

≤H(Dn
1 )σ̄∣xn1

=
n

∑
k=1
H(Dk)νxk

=
n

∑
k=1

max(f) − f(δxk)

= nmax(f) − nf(freq(xn1))

≤ nmax(f) − nh. (C.64)

We can get rid of the conditioning on the right-hand side of Eq. C.63 by using [DFR20,
Lemma B.5]. This gives us

H̃↑α(A
n
1X

n
1D

n
1 ∣B

n
1E)σ̄∣Ω ≥ H̃↑α(A

n
1X

n
1D

n
1 ∣B

n
1E)σ̄ −

α

α − 1 log 1
Pσ(Ω)

(C.65)

Moreover, using Eq. C.50, we can show that Bk is independent of Ak−1
1 Xk−1

1 Dk−1
1 Bk−1

1 E in σ̄.
Firstly, for σAk−1

1 Bk1E
= trAk ○M

δ
k(σ

(k,0)
Ak−1

1 Bk−1
1 RkE

), we have

σAk−1
1 Bk1E

= (1 − δ) trAk ○Mk(σ
(k,0)
Ak−1

1 Bk−1
1 RkE

) + δρ
(k,δ)
Bk

⊗ σAk−1
1 Bk−1

1 E (C.66)

= ((1 − δ)θ(k)Bk
+ δρ

(k,δ)
Bk

) ⊗ σAk−1
1 Bk−1

1 E. (C.67)
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Since, σ̄Ak−1
1 Xk−1

1 Dk−1
1 Bk1E

= Dk−1 ○ Tk−1⋯○D1 ○ T1(σAk−1
1 Bk1E

), we can easily see that Bk is inde-
pendent of the other registers. In particular, σ̄ satisfies the Markov chain Ak−1

1 Xk−1
1 Dk−1

1 ↔

Bk−1
1 E ↔ Bk. Let’s define the channels

M̄k ∶= Dk ○ Tk ○Mk (C.68)

M̄
δ

k ∶= Dk ○ Tk ○M
δ
k . (C.69)

Now we can use [DFR20, Corollary 3.5] to show that for every k ∈ [n]

H̃↓α(A
k
1X

k
1D

k
1 ∣B

k
1E)σ̄ ≥ H̃

↓
α(A

k−1
1 Xk−1

1 Dk−1
1 ∣Bk−1

1 E)σ̄ + inf
ωRkR̃k

H̃↓α(AkXkDk∣BkR̃k)M̄δ
k(ω)

≥ H̃↓α(A
k−1
1 Xk−1

1 Dk−1
1 ∣Bk−1

1 E)σ̄

+min{ inf
ωRkR̃k

H̃↓α(AkDk∣BkR̃k)M̄k(ω), H̃
↓
α(AkDk∣Bk)Dk○Tk(ρ(k,δ)AkBk

)} .

(C.70)

where we have used the quasi-concavity of Rényi conditional entropies [Tom16, Pg 73] and
the fact that Xk are classical in the second line.

We now lower bound the two terms in the minimum above. Using [DFR20, Lemma
B.9], for a state ν = M̄k(ωRkR̃k) and 1 < α < 1

log(1+2∣A∣∣D∣) we have that

H̃↓α(AkDk∣BkR̃k)ν ≥H(AkDk∣BkR̃k)ν − (α − 1) log2 (1 + 2∣A∣∣D∣)

=H(Ak∣BkR̃k)ν +H(Dk∣AkBkR̃k)ν − (α − 1) log2 (1 + 2∣A∣∣D∣)

=H(Ak∣BkR̃k)ν +H(Dk∣Xk)ν − (α − 1) log2 (1 + 2∣A∣∣D∣)

=H(Ak∣BkR̃k)ν +∑
x

ν(x)(max(f) − f(δx)) − (α − 1) log2 (1 + 2∣A∣∣D∣)

=H(Ak∣BkR̃k)ν +max(f) − f(νX) − (α − 1) log2 (1 + 2∣A∣∣D∣)

≥max(f) − (α − 1) log2 (1 + 2∣A∣∣D∣) (C.71)

For the second term, and 1 < α < 1
log(1+2∣A∣∣D∣) , we have

H̃↓α(AkDk∣Bk)Dk○Tk(ρ(k,δ)AkBk
) ≥H(AkDk∣Bk)Dk○Tk(ρ(k,δ)AkBk

) − (α − 1) log2 (1 + 2∣A∣∣D∣)

≥H(AkDk∣Bk)M̄k(ρ̃(k,0)Rk
) − (α − 1) log2 (1 + 2∣A∣∣D∣)

− 2(ε + δ) log ∣A∣∣D∣ − g(ε + δ)

≥max(f) − (α − 1) log2 (1 + 2∣A∣∣D∣) − 2(ε + δ) log ∣A∣∣D∣ − g2(ε + δ)

(C.72)

where we have used [DFR20, Lemma B.9] in the first line, the AFW continuity
bound [Wil13, Theorem 11.10.3] in the second line to convert the entropy on Dk ○Tk(ρ(k,δ)AkBk

)
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to an entropy on M̄k(ρ̃
(k,0)
Rk

) and finally we use bound in Eq. C.71 for states of this form.

Plugging these in Eq. C.70, gives us that for every k ∈ [n]

H̃↓α(A
k
1X

k
1D

k
1 ∣B

k
1E)σ̄ ≥ H̃

↓
α(A

k−1
1 Xk−1

1 Dk−1
1 ∣Bk−1

1 E)σ̄

+max(f) − (α − 1) log2 (1 + 2∣A∣∣D∣)

− 2(ε + δ) log ∣A∣∣D∣ − g2(ε + δ) (C.73)

Consecutively using this bound gives us

H̃↑α(A
n
1X

n
1D

n
1 ∣B

n
1E)σ̄ ≥ H̃

↓
α(A

n
1X

n
1D

n
1 ∣B

n
1E)σ̄

≥ nmax(f) − n (α − 1) log2 (1 + 2∣A∣∣D∣)

− 2n(ε + δ) log ∣A∣∣D∣ − ng2(ε + δ) (C.74)

Combining Eq. C.59, C.63, C.64, C.65 and C.74, we get

H̃↑α(A
n
1 ∣B

n
1E)σ∣Ω ≥ nh − n (α − 1) log2 (1 + 2∣A∣∣D∣) − 2n(ε + δ) log ∣A∣∣D∣ − ng2(ε + δ)

−
α

α − 1 log 1
Pσ(Ω)

. (C.75)

Plugging this into Eq. C.58, we get

Hµ′+ε′
min (An1 ∣B

n
1E)ρ∣Ω ≥ nh − n (α − 1) log2 (1 + 2∣A∣∣D∣) −

α

α − 1nµ

− 2n(ε + δ) log ∣A∣∣D∣ − ng2(ε + δ)

−
1

α − 1 (α log 1
Pρ′(Ω)

+
α

µ2 + α log 1
1 − µ2 + g1(ε

′, µ′)) . (C.76)

Finally, we choose α = 1 +
√
µ

log(1+2∣A∣∣D∣) and use the α < 2 as an upper bound to derive

Hµ′+ε′
min (An1 ∣B

n
1E)ρ∣Ω ≥ n(h − 3√µ log (1 + 2∣A∣∣D∣) − 2(ε + δ) log ∣A∣∣D∣ − g2(ε + δ))

−
log (1 + 2∣A∣∣D∣)

√
µ

(2 log 1
Pρ(Ω) − µ

+
2
µ2 + 2 log 1

1 − µ2 + g1(ε
′, µ′)) .

(C.77)

Note that log (1 + 2∣A∣∣D∣) ≤ log (1 + 2∣A∣) + log ∣D∣ ≤ log (1 + 2∣A∣) + 2⌈∥∇f∥∞⌉ = V . Recall
that µ = z(ε + ν, δ)1/3. Since, ν can be chosen arbitrarily greater than 0, if we let ν → 0, the
bound in Eq. C.77 is still valid. Finally, choose δ = ε to derive the bound in the theorem.

Case 2: Finally, for a state ρAn1Bn1E which satisfies the assumptions of the Theorem but
is not full rank, we can consider the full rank states ρ(ε)An1Bn1E ∶= (1−ε)ρAn1Bn1E +ετAn1Bn1E for an
arbitrarily small ε > 0. ρ(ε)An1Bn1E will be full rank and satisfy the assumptions of the Theorem
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and the bound in Eq. C.77 for ε→ ε + ε. One can then prove the lower bound above for the
state ρAn1Bn1E by taking the limit ε→ 0. �

C.5. Proof of Lemma 5.13
The following proof was provided by user:fedja in response to a question by user:noel

(pseudonym used by AM) on MathOverflow [fu23]. We reproduce it here for completeness.

Proof of Lemma 5.13. Let σ = ∑i qi ∣xi⟩ ⟨xi∣ be the eigenvalue decomposition of σ. Let δ1 ∈

(0,1) be a small parameter, which will be specified later. For every k ≥ 0, define

Xk ∶= span{∣xi⟩ ∶ qi ∈ ((1 + δ1)
−(k+1), (1 + δ1)

−k]} (C.78)

dk ∶= dim(Xk) (C.79)

We have X = ⊕∞
k=0Xk and σ = ⊕∞

k=0 σ∣Xk . Let Pk be the projector on the space Xk for every
k. Note that Pk commute with σ. If we restrict σ to the space Xk, we have

1
(1 + δ1)k+1 1Xk ≤ σ∣Xk ≤

1
(1 + δ1)k

1Xk (C.80)

for every k. Further, for any projector Πk in the space Xk, we have

∥σ∣
− 1

2
XkΠkσ∣XkΠkσ∣

− 1
2
Xk ∥∞ ≤ ∥σ∣Xk∥∞∥σ∣−1

Xk∥∞

≤ 1 + δ1

which implies that for any projector Πk in Xk

Πkσ∣XkΠk ≤ (1 + δ1)σ∣Xk . (C.81)

We will choose the projector Π to satisfy the lemma to be of the form Π = ⊕∞
k=0 Πk, where

each Πk is a projector in the space Xk. With such a projector, we have

ΠσΠ =
∞
⊕
k=0

Πkσ∣XkΠk

≤ (1 + δ1)
∞
⊕
k=0

σ∣Xk

= (1 + δ1)σ. (C.82)

Define ∆ ∶= (ρ − σ)+ to be the positive part of (ρ − σ) and observe that tr(∆) ≤ 2ε. Note
that ρ ≤ σ +∆. Further, let ∆k ∶= Pk∆Pk and µk ∶= tr(∆Pk) for every k. Then, we have that

∞
∑
k=0

µk =
∞
∑
k=0

tr(∆Pk)

= tr(∆)

≤ 2ε. (C.83)
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Let ∆k = ∑
dk
i=1 νki ∣yki⟩ ⟨yki∣ be the eigenvalue decomposition of ∆k. Let δ2 ∈ (0,1) and K ∈ N

be two more parameters to be chosen later. Define the subspace Yk of Xk as

Yk ∶= span{∣yki⟩ ∶ νki ≤ δ2(1 + δ1)
−(k+1)} . (C.84)

Note that the codimension of Yk in the space Xk, is at most µk
δ2

(1+δ1)k+1. We further restrict
the subspace Yk to the space

Zk ∶= Yk ∩
k−K−1
⋂
j=0

ker(Pj∆). (C.85)

Since, rank of Pj is dj, the codimension of Zk in Yk is at most ∑k−K−1
j=0 dj. Define Πk to be

the projector on Zk. Note that since Zk is a subspace of Xk, Πk is a projector in the space
Xk. We define the projector

Π ∶=
∞
⊕
k=0

Πk, (C.86)

which is of the form promised and show that this satisfies the conditions of the lemma.

We begin by showing that Π∆Π can be bounded by a small multiple of ΠσΠ, specifically

Π∆Π ≤ (2K + 1)δ2ΠσΠ.

It is sufficient to show that for ∣v⟩ = ⊕∞
k=0 ∣vk⟩ such that ∣vk⟩ ∈ Zk for every k, we have

⟨v∣∆∣v⟩ ≤ (2K + 1)δ2 ⟨v∣σ∣v⟩ . (C.87)

The left-hand side above can be expanded as

⟨v∣∆∣v⟩ =
∞
∑
i=0

∞
∑
j=0

⟨vi∣∆∣vj⟩

=
∞
∑
i=0

⟨vi∣∆∣vi⟩ + 2
∞
∑
i=0

i−1
∑
j=0

Re{⟨vi∣∆∣vj⟩}

≤
∞
∑
i=0

⟨vi∣∆∣vi⟩ + 2
∞
∑
i=0

i−1
∑
j=0

∣ ⟨vi∣∆∣vj⟩ ∣

=
∞
∑
i=0

⟨vi∣∆∣vi⟩ + 2
∞
∑
i=0

i−1
∑

j=i−K
∣ ⟨vi∣∆∣vj⟩ ∣ + 2

∞
∑
i=0

i−K−1
∑
j=0

∣ ⟨vi∣∆∣vj⟩ ∣. (C.88)

The first summation above can be bounded as
∞
∑
i=0

⟨vi∣∆∣vi⟩ ≤ δ2
∞
∑
i=0

1
(1 + δ1)i+1 ⟨vi∣vi⟩

≤ δ2
∞
∑
i=0

⟨vi∣σ∣vi⟩ (C.89)

where we have used the fact that ∣vi⟩ ∈ Yi and the maximum eigenvalue of Pi∆Pi = ∆i in
this subspace is at most δ2

1
(1+δ1)i+1 , and the fact that the minimum eigenvalue of σ in Zi ⊆ Xi
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is at least 1
(1+δ1)i+1 .

We can bound the second term as
∞
∑
i=0

i−1
∑

j=i−K
∣ ⟨vi∣∆∣vj⟩ ∣ ≤

∞
∑
i=0

i−1
∑

j=i−K
∥∆ 1

2 ∣vj⟩∥ ∥∆ 1
2 ∣vi⟩∥

≤
∞
∑
i=0

1
2

i−1
∑

j=i−K
(∥∆ 1

2 ∣vj⟩∥
2
+ ∥∆ 1

2 ∣vi⟩∥
2
)

=K
∞
∑
i=0

∥∆ 1
2 ∣vi⟩∥

2

=K
∞
∑
i=0

⟨vi∣∆∣vi⟩

where we have used the Cauchy-Schwarz inequality in the first line along with the fact that
∆ ≥ 0 and the AM-GM inequality in the second line. This summation can now be bounded
using Eq. C.89.

The last term in Eq. C.88 is a summation over inner products ∣ ⟨vi∣∆∣vj⟩ ∣ = ∣ ⟨vj ∣Pj∆∣vi⟩ ∣

for j ≤ i −K − 1. By our definition for the subspace Zi, we have that ∣vi⟩ ∈ ker(Pj∆) for
these choices of the index j.

Putting these together, we have the bound

⟨v∣∆∣v⟩ ≤ (2K + 1) δ2
∞
∑
i=0

⟨vi∣σ∣vi⟩

= (2K + 1) δ2 ⟨v∣σ∣v⟩

for every ∣v⟩ = Π ∣v⟩. Above we have used the fact that ∣vi⟩ ∈ Xi and σ = ⊕∞
i=0 σ∣Xi . Therefore,

we have

Π∆Π ≤ (2K + 1) δ2ΠσΠ (C.90)

and also

ΠρΠ ≤ Π (σ +∆)Π

≤ (1 + (2K + 1) δ2)ΠσΠ. (C.91)

Using Eq. C.82 we can remove the sandwiching projectors from σ to get the bound

ΠρΠ ≤ (1 + (2K + 1) δ2) (1 + δ1)σ. (C.92)
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Now, we will show that tr(Πσ) is large. Recall that the codimension of Zk in Xk is at most

µk
δ2

(1 + δ1)
k+1 +

k−K−1
∑
j=0

dj. (C.93)

Hence,

tr ((1−Π)σ) =
∞
∑
k=0

tr ((Pk −Πk)σ∣Xk)

≤
∞
∑
k=0

1
(1 + δ1)k

tr(Pk −Πk)

≤
∞
∑
k=0

1
(1 + δ1)k

(
µk
δ2

(1 + δ1)
k+1 +

k−K−1
∑
j=0

dj)

=
1
δ2

(1 + δ1)
∞
∑
k=0
µk +

∞
∑
j=0
dj

∞
∑

k=j+K+1
(1 + δ1)

−k

=
2ε(1 + δ1)

δ2
+

1
δ1

(1 + δ1)
−(K−1)

∞
∑
j=0
dj

1
(1 + δ1)j+1

= (1 + δ1) (
2ε
δ2
+

1
δ1

(1 + δ1)
−K) (C.94)

where in the second line we have used σ∣Xk ≤ (1 + δ1)−k 1Xk , in the third line we have
used the bound on the codimension of Zk in Eq. C.93, in the fifth line we have used the
bound in Eq. C.83 and in the last line we have used the fact that∑∞

j=0 dj(1+δ1)−(j+1) ≤ trσ ≤ 1.

Now all that is left to do is to select the parameters δ1, δ2 and K. We choose

δ1 ∶= ε
1/3 (C.95)

δ2 ∶= ε
2/3 (C.96)

K ∶= ⌊
2
ε1/3

log 1
ε2/3

⌋ . (C.97)

For these parameters, we get

ΠρΠ ≤ (1 + 8
3ε

1/3 log 1
ε
+ ε2/3) (1 + ε1/3)σ. (C.98)

Note that (1 + δ1)−1 ≤ (1 − δ1/2) ≤ e−δ1/2 since δ1 ∈ (0,1). This implies

tr ((1−Π)σ) ≤ (1 + ε1/3) (2ε1/3 + 1
ε1/3

e−K
ε1/3

2 )

≤ (1 + ε1/3) (2ε1/3 + 1
ε1/3

e
− ε

1/3
2 ( 2

ε1/3
log 1

ε2/3
−1)

)

≤ (1 + ε1/3) (2ε1/3 + 1
ε1/3

2ε2/3)

≤ 4(1 + ε1/3)ε1/3.
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Finally, using the fact that 1
2 ∥ρ − σ∥1 ≤ ε, we get

tr ((1−Π)ρ) ≤ tr ((1−Π)σ) + 2ε

≤ 4(1 + ε1/3)ε1/3 + 2ε. (C.99)

�
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Appendix D

Appendices to Chapter 6

D.1. Single-round results
Lemma D.1. Suppose Alice and Bob use a strategy, which wins the 3CHSH⊥ game with
probability ω. Then, their answers A and B for the game satisfy

Pr[A = B] ≥ ω − ν − 2α. (D.1)

Proof. Let PXY represent the probability distribution of the questions for the 3CHSH⊥ game.
It follows that the winning probability of the 3CHSH⊥ game satisfies:

ω = ∑
x,y

PXY (xy) ∑
a,b∶V (x,y,a,b)=1

PAB∣XY (ab∣xy)

= (1 − α)2(1 − ν)Pr[A = B∣X = 0, Y = 2] + (1 − α)2ν Pr(A⊕B =XY ∣X,Y ∈ {0,1})

+ (1 − (1 − α)2)

≤ (1 − α)2(1 − ν)Pr[A = B∣X = 0, Y = 2] + (1 − α)2ν + (1 − (1 − α)2)

≤ Pr[A = B] + (1 − α)2ν + (1 − (1 − α)2)

≤ Pr[A = B] + ν + 2α.

�

Lemma D.2 ( [AF20, Lemma 5.3]). Suppose that the quantum strategy for the 2CHSH
game starting with ρ(0)EAEBE

wins the 2CHSH game with probability ω ∈ [3
4 ,

2+
√

2
4 ]. Let A be

Alice’s answer produced according to the given strategy. Let ρXAE be the state produced once
Alice applies her measurements to ρ(0). Then, for question x ∈ {0,1} we have

H(A∣E)ρ(x) ≥ F (ω) (D.2)



where F (ω) = log(2)−h (1
2 +

1
2

√
3 − 16ω (1 − ω)) and ρ(x)AE are the A and E registers of ρXAE

for X = x.

Proof. This is proved as an intermediate step in the Proof of Lemma 5.3 (Appendix C.1)
[AF20]. �

Lemma D.3. Suppose that the quantum strategy for the 3CHSH game starting with ρ(0)EAEBE

wins the 3CHSH game with probability ω ∈ [(1 − ν) + 3
4ν, (1 − ν) +

2+
√

2
4 ν]. Let A be Alice’s

answer produced according to the strategy. Then, for the post measurement state ρXAE we
have

H(A∣EX)ρ ≥ F (ω̂ν)

where ω̂ν ∶= ω−(1−ν)
ν and F is as in Lemma D.2

Proof. Let S = (ρ
(0)
EAEBE

,{Ax}x∈X ,{By}y∈Y) be the strategy for the 3CHSH mentioned in the
lemma hypothesis. Let S′ be the strategy for the 2CHSH game, which uses the state ρ(0)EAEBE

,
the measurements {Ax}x∈{0,1} as Alice’s measurements and the measurements {By}y∈{0,1} as
Bob’s measurements. Let PXY be the distribution of questions in the 2CHSH game, PAB∣XY

be the conditional probability distribution of the answers in the strategy S and QAB∣XY in
the strategy S′. Then, by definition of the strategy S′, we have for all x, y ∈ {0,1} that

QAB∣X=x,Y =y = PAB∣X=x,Y =y.

Now, observe that the winning probability ω of the 3CHSH game can be written as

ω = (1 − ν)P [A = B∣X = 0, Y = 2] + ν ∑
x,y∈{0,1}

PXY (xy) ∑
a,b∶a⊕b=xy

PAB∣XY (ab∣xy)

≤ (1 − ν) + ν ∑
x,y∈{0,1}

PXY (xy) ∑
a,b∶a⊕b=xy

PAB∣XY (ab∣xy)

= (1 − ν) + ν ∑
x,y∈{0,1}

PXY (xy) ∑
a,b∶a⊕b=xy

QAB∣XY (ab∣xy)

= (1 − ν) + νωS′

where ωS′ is the winning probability for the 2CHSH game with the strategy S′. The above
implies

ωS′ ≥
ω − (1 − ν)

ν
= ω̂ν . (D.3)

Note that ω̂ν ≥ 3/4 for the range of ω in the hypothesis. Using Lemma D.2, we have for
x ∈ {0,1}

H(A∣E)ρx ≥ log(2) − h(
1
2 +

1
2
√

3 − 16ω̂ν(1 − ω̂ν))
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where ρ(x)AE is the state produced at the end of the strategy S′ for question X = x. This is
the same as the state produced at the end of the strategy S for question X = x because of
the way we have defined S′. Therefore, for the state produced at the end of S, we have

H(A∣EX)ρ = (1 − ν2)H(A∣E)ρ∣X=0 +
ν

2H(A∣E)ρ∣X=1

≥ log(2) − h(
1
2 +

1
2
√

3 − 16ω̂ν(1 − ω̂ν))

which proves the lemma. �

Proof of Lemma 6.3. Let X and Y represent the questions for the 3CHSH game, and X⊥ and
Y⊥ the questions for the 3CHSH⊥ game. Let S = (ρ

(0)
EAEBE

,{Ax}x∈X⊥ ,{By}y∈Y⊥) be the strategy
which wins the 3CHSH⊥ with probability ω. Let S̄ be the strategy for the 3CHSH game,
which uses the state ρ̄(0)EAEBE

= ρ(0), the measurements {Ax}x∈X as Alice’s measurements and
the measurements {By}y∈Y as Bob’s measurements. Let PXY be the distribution of questions
for the 3CHSH⊥ game, QXY be the distribution of questions for the 3CHSH game, PAB∣XY

be the conditional probability distribution of the answers in the strategy S and QAB∣XY in
the strategy S̄. Then, by definition of the strategy S̄, we have for all x ∈ X and y ∈ Y,

QAB∣X=x,Y =y = PAB∣X=x,Y =y.

Now, observe that the winning probability of the 3CHSH⊥ game can be written as

ω = ∑
x∈X⊥,y∈Y⊥

PXY (xy) ∑
a,b∶V (ab∣xy)=1

PAB∣XY (ab∣xy)

= (1 − (1 − α)2) + (1 − α)2 ∑
x∈X ,y∈Y

QXY (xy) ∑
a,b∶V (ab∣xy)=1

PAB∣XY (ab∣xy)

= (1 − (1 − α)2) + (1 − α)2ωS̄

where ωS̄ is the winning probability for the 3CHSH game under the strategy S̄. Thus, we
have

ωS̄ = 1 − 1 − ω
(1 − α)2 .

Observe that ωS̄ ∈ [(1 − ν) + 3
4ν, (1 − ν) +

2+
√

2
4 ν] for the range of ω in the hypothesis for the

theorem. Let ρ(x)AE and ρ̄
(x)
AE denote the states at the end of the protocol S and S̄ when

Alice receives the question X = x. Then, these two states are equal for x ≠⊥. Further, the
probability distribution PX ∣X≠⊥ = QX , which implies that

ρXAE∣X≠⊥ = ∑
x∈X

PX ∣X≠⊥(x)JxK⊗ ρ
(x)
AE

= ∑
x∈X

QX(x)JxK⊗ ρ̄(x)AE
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= ρ̄XAE.

We can use these to create the entropy bound as follows

H(AB∣EXY )ρ ≥H(A∣EXY )ρ

=H(A∣EX)ρ

≥ (1 − α)H(A∣EX)ρ∣X≠⊥

= (1 − α)H(A∣EX)ρ̄

≥ (1 − α) (log(2) − h(
1
2 +

1
2
√

3 − 16gα,ν(ω)(1 − gα,ν(ω))))

where the first line follows from the fact that B is classical, the second line from the no-
signalling property which implies that Y ↔ X ↔ AE, and in the last line we have used
Lemma D.3. �

D.2. Adapting statements from [BVY21] to our setting
In the parallel DIQKD setting, Eve distributes the registers EA and EB of the state

ψEAEBE between Alice and Bob, who then play the n anchored games parallelly using
their states. In [BVY21], the situation is almost the same, except there are only two
parties, Alice and Bob. We can use the results proven in [BVY21] by simply introducing
a register for Eve in the state ψ in their setting and tracking it through their proofs.
The objective for Alice and Bob is also different in [BVY21]. They seek to maximise
the winning probability of the parallel repetition game. However, since [BVY21] con-
siders an arbitrary strategy for parallel repetition, no modification is required on this
account. Lastly, [BVY21] also considers conditioning on an event WC , representing the
two parties winning a subset C of the rounds. The results only rely on this event being
determined by the variable r−i, so we can simply replaceWC by the trivial event for our case.

In their proofs, [BVY21] uses the fact that the state between Alice and Bob can
be assumed to be symmetric, which we cannot necessarily guarantee with three parties.
However, it is straightforward to also carry out their proofs without using this assumption.

We will go through the statements considered in [BVY21] till Section 6 and briefly
explain the modifications required to prove them in our setting. The numbering in the
following list follows [BVY21].

(1) Classical results: All facts involving only classical variables follow for our setting
from the same arguments, since we can consider Eve’s register E as being a part of
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Alice’s register EA, and Alice’s measurements as {AEAxn1
(an1) ⊗ 1

E}. This reduces our
setting to the one in [BVY21] for these results.

(2) Lemma 4.6: This is true in our case because only classical variables and their
properties are used here.

(3) Proposition 4.9: This is true because the argument traces over all the registers in
the states Φ. Thus, we can again view E as being a part of EA here.

(4) Eq. 33-34: The definitions of Ξ and Λ should include the register E as part of ψ.
Same for the definitions of ξ and λ.

(5) Claim 5.13: We instead need to prove that

E
I

E
R∣WC

[I(Yi ∶ EAE)ξr] = O(δ)

E
I

E
R∣WC

[I(Xi ∶ EBE)λr] = O(δ)

[BVY21] proves the first claim and notes that the second one is similar. To prove
the above results, we simply need to follow the proof in [BVY21], and note that
all instances of EA in the proof can be replaced with EAE. Also, note that Eq. 38
in [BVY21] can be derived without assuming that ψ is symmetric. To prove the
second claim, we would similarly consider EBE together.

(6) Claim 5.14: We instead need to prove that

E
I

E
R−i∣WC

E
XY

∥ξEAEr−i,x,y
− ξEAEr−i,x,⊥∥

2
1 = O(δ1/2/α4)

E
I

E
R−i∣WC

E
XY

∥λEBEr−i,x,y
− λEBEr−i,⊥,y∥

2
1 = O(δ1/2/α4).

Once again this can be done by replacing EA by EAE in the proof for the first claim
and EB by EBE for the second claim. The proof also uses relations between several
classical variables, which can be handled using the argument for classical variables
mentioned above.

(7) Proof of Lemma 5.12:
(a) Claim 5.15: We need to prove that ∣Φ̃ri,⊥/x,y⟩

EAEBE is a purification of the
state ξEAEri,x,y and that ∣Φ̃ri,⊥,y⟩

EAEBE is a purification of the state ξEAEri,⊥,y. Once
again, this can be done by noting that we don’t necessarily need to use the
fact that the state is symmetric for the proof. Following the same procedure
as [BVY21], we can derive

ξEAEri,x,y
= γ−2

ri,⊥/x,yAω(aC)
1/2 trEB (Bω−i,y(bC)Ψ)Aω(aC)

1/2

= Φ̃EAE
ri,⊥/x,y.

The rest of the proof remains the same.
(b) Claim 5.16: Also needs to be modified as Claim 5.15 has been.
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The rest of the steps in the proof rely on using claims, which were proven before.
Since, we have already proven them above, the steps follow in our case as well.

(8) Lemma 5.17: Since the definition of γr−i,s,y traces over all the quantum registers, we
can simply view our setting as an instance of the anchored games setting by letting
Alice keep the E register. Note that this proof does not use any property about the
event WC beyond the fact that it is determined by r−i.

(9) Proof of Proposition 5.1: All the lemmas and facts required for the proof of
Proposition 5.1 have been shown to be valid in our setting. One can now simply
follow the proof given in [BVY21] to prove the proposition.

D.3. Supplementary arguments for security proof
In this section, we continue the argument from the bound in Eq. 6.88 and show that it

can be transformed into a lower bound for HO(µ′)
min (Ât1∣T

t
1I

t
1Ωn

1EXSAS)ρ∣¬F . We also upper
bound the information leakage during the information reconciliation phase.

D.3.1. Removing B̂t
1 from the smooth min-entropy bound

We begin by removing the B̂t
1 registers from the entropy inHµ′+ε′

min (Ât1B̂
t
1∣X̂

t
1Ŷ

t
1T

t
1I

t
1ΩJcE)ρ∣¬F .

For this, it is sufficient to prove that the entropy

Hε′

max(B̂
t
1∣Â

t
1X̂

t
1Ŷ

t
1T

t
1)ρ∣¬F (D.4)

is small. Intuitively, this should be true because the average winning probability is at least
ωth ≥ 1 − ν, which implies using Lemma D.1 that

Pr[A = B] ≥ 1 − 2ν − 2α. (D.5)

So, we should be able to prove that

Hε′

max(B̂
t
1∣Â

t
1X̂

t
1Ŷ

t
1T

t
1)ρ∣¬F ≲ t h(2(ν + α)). (D.6)

To prove this, let J̄ ∶= {j ∈ J ∶Xj, Yj = (0,2)} for the state ρ (unconditioned). Define the
events,

E1 ∶= [
∣S∣

t
≥ γ − δ1] (D.7)

E2 ∶= [
∣J̄ ∣

t
≥ (1 − α)2(1 − ν) − δ1] (D.8)

E3 ∶= [
1
t
∑
i∈J
V (Xi, Yi,Ai,Bi) ≥ ωth − δ1] (D.9)
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for some small parameter δ1 ∈ (0,1). Using the Chernoff-Hoeffding bound, we have that

Pr[Ec
1] ≤ e

−Ω(δ2
1t) (D.10)

Pr[Ec
2] ≤ e

−Ω(δ2
1t). (D.11)

Following [Vid17] (which uses [TL17, Lemma 6]), we also have that

Pr[¬F ∧Ec
3] ≤ e

−Ω(δ2
1γt). (D.12)

Therefore, we have that conditioned on the event ¬F , E1∧E2∧E3 hold except with probability
e−Ω(δ21γt)

Prρ(¬F ) , i.e.,

1
2 ∥ρT t1X̂t

1Ŷ
t
1 Â

t
1B̂

t
1∣¬F

− ρT t1X̂t
1Ŷ

t
1 Â

t
1B̂

t
1,E1∧E2∧E3∣¬F∥1

≤
e−Ω(δ2

1γt)

Prρ(¬F )
. (D.13)

Let δ(x, y) be the Kronecker delta function, which is 1 if x = y and 0 otherwise. Let e be the
relative error between Ât1 and B̂t

1. If the events E1 ∧E2 ∧E3 are true, then we have

ωth − δ1 ≤
1
t
∑
i∈J
V (Xi, Yi,Ai,Bi)

=
1
t
∑
i∈J̄
V (Xi, Yi,Ai,Bi) +

1
t
∑
i∈J∖J̄

V (Xi, Yi,Ai,Bi)

≤
1
t
∑
i∈J̄
δ(Ai,Bi) +

1
t
∑
i∈J∖J̄

(1 + δ(Ai,Bi))

≤ 1 − e + t − ∣J̄ ∣

t

≤ 1 − e + 1 − (1 − α)2(1 − ν) + δ1

≤ 1 − e + ν + 2α + δ1

which implies that

e ≤ 1 − ωth + ν + 2α + 2δ1. (D.14)

Further, since ωth ≥ 1 − ν, we have that

e ≤ 2(ν + α + δ1). (D.15)

This enables us to bound the max-entropy for the state ρE1∧E2∧E3∣¬F :

Hmax(B̂
t
1∣Â

t
1)ρE1∧E2∧E3 ∣¬F

≤ t ⋅ h(2(ν + α + δ1)). (D.16)

Combining with Eq. D.13 shows that

Hε′′

max(B̂
t
1∣Â

t
1)ρ∣¬F ≤ t ⋅ h(2(ν + α + δ1)) (D.17)

for ε′′ ∶= e−Ω(δ21γt)√
Pr(¬F ) = e

−Ω(n).
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We can use this to bound the entropy of Alice’s raw key alone by using the chain rule
in [VDTR13, Theorem 15] and Eq. 6.88:

Hµ′+5ε′
min (Ât1∣X̂

t
1Ŷ

t
1T

t
1I

t
1ΩJcE)ρ∣¬F

≥Hµ′+ε′
min (Ât1B̂

t
1∣X̂

t
1Ŷ

t
1T

t
1I

t
1ΩJcE)ρ∣¬F −H

ε′

max(B̂
t
1∣Â

t
1X̂

t
1Ŷ

t
1T

t
1I

t
1ΩJcE)ρ∣¬F −O (log 1

ε′
)

≥Hµ′+ε′
min (Ât1B̂

t
1∣X̂

t
1Ŷ

t
1T

t
1I

t
1ΩJcE)ρ∣¬F −H

ε′

max(B̂
t
1∣Â

t
1)ρ∣¬F −O (log 1

ε′
)

≥ t((1 − α)Fα,ν(ωth) −O (

√
µ

νγ
) − h(2(ν + α + δ1))) −O(1). (D.18)

We chose the smoothing of the max-entropy above to be ε′ as well for simplicity. Since, ε′

is a constant greater than 0 and ε′′ = e−Ω(n), it is valid to use the bound in Eq. D.17 for
sufficiently large n.

D.3.2. Adding ΩJ to the conditioning register

Lemma D.4. For ρΩXAE a classical (ΩXA)-quantum (E) state which satisfies the Markov
chain Ω↔X ↔ AE and an event F determined by X and A, i.e., F ⊆ X ×A, the conditional
state ρΩXAE∣F also satisfies Ω↔X ↔ AE.

Proof. Since ρΩXAE is a classical (ΩXA)-quantum (E) state and satisfies the Markov chain
Ω↔X ↔ AE, ρ is of the form

ρΩXAE = ∑
x

ρ(x)JxK⊗ (∑
ω

ρ(ω∣x)JωK) ⊗ (∑
a

ρ(a∣x)JaK⊗ ρE∣a,x) . (D.19)

Let ρ(F ) = ∑x,a∈F ρ(x)ρ(a∣x) be the probability of the event F . The conditional state ρ∣F
can be written as

ρΩXAE∣F =
1

ρ(F )
ρΩXAE∧F

=
1

ρ(F )
∑
x,a∈F

ρ(x)ρ(a∣x)Jx, aK⊗ ρE∣a,x ⊗ (∑
ω

ρ(ω∣x)JωK)

= ∑
x

ρ(x∣F )JxK⊗ (∑
a

ρ(a∣x,F )JaK⊗ ρE∣a,x) ⊗ (∑
ω

ρ(ω∣x)JωK)

which clearly satisfies the Markov chain Ω↔X ↔ AE. �

Note that using Lemma 6.5, we have that the state ρ (unconditioned) satisfies the Markov
chain

ΩJ ↔ JXJYJ ↔ An1B
n
1 ΩJcET

t
1. (D.20)
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More precisely, according to Lemma 6.5 the above is true for every fixed J , and the above
follows from using simple facts about Markov chains. Further, the event ¬F is defined
using the variables JXJYJAJBJT t1, so using Lemma D.4, we have that the state ρ∣¬F also
satisfies the above Markov chain condition. Note that tracing over AJcBJc does not alter this.

Therefore, there exists a channel Φ ∶ JXJYJ → JXJYJΩJ such that

Φ (ρ
AJBJXJYJJΩJcT t1E
∣¬F ) = ρ

AJBJXJYJJΩn1T t1E
∣¬F . (D.21)

This implies that

Hµ′+5ε′
min (AJ ∣JXJYJT

t
1Ωn

1E)ρ∣¬F =Hµ′+5ε′
min (AJ ∣JXJYJT

t
1ΩJcE)ρ∣¬F . (D.22)

We have already bounded the right-hand side above in Eq. D.18.

D.3.3. Accounting for information leakage during testing

Finally, we also need to consider the entropy loss due to Alice transmitting AS in plaintext
to Bob. Using the chain rule [VDTR13, Theorem 14] we have that

Hµ′+8ε′
min (AJ ∣XJYJT

t
1JΩn

1EAS)ρ∣¬F

≥Hµ′+5ε′
min (AJ ∣XJYJT

t
1JΩn

1E)ρ∣¬F −H
ε′

max(AS ∣XJYJT
t
1JΩn

1E)ρ∣¬F −O (log 1
ε′
) . (D.23)

We can show that the max-entropy above is small for sufficiently large n. Since, Ti are chosen
in an i.i.d. fashion with probability P (Ti = 1) = γ, we have that with probability at least
1−e−Ω(γ2t), the number of Ti that are 1 is at most 2γt. Let’s call this event Q. We then have

ρJXJYJAJBJT t1 = ρJXJYJAJBJ ⊗ ρT t1

≈e−Ω(γ2t) ρJXJYJAJBJ ⊗ ρT t1∧Q.

Let ηJXJYJAJBJT t1 ∶= ρJXJYJAJBJ ⊗ ρT t1∧Q. Using Lemma A.14, we have that

1
2
∥ρXJYJAJBJT t1 ∣¬F − ηXJYJAJBJT t1 ∣¬F ∥1 ≤

e−Ω(γ2t)

Prρ(¬F )
(D.24)

and hence P (ρXJYJAJBJT t1 ∣¬F , ηXJYJAJBJT t1 ∣¬F ) ≤ e−Ω(γ2t)/
√

Prρ(¬F ). Note that for a fixed
value of T t1 = τ t1, the state ηAS ∣τ t1 has a support of size at most ∣A∣2γt. Therefore, for ε′ =
Ω(1) ≥ e−Ω(γ2t)/

√
Prρ(¬F ) = e−Ω(n), we have that

Hε′

max(AS ∣JXJYJT
t
1Ωn

1E)ρ∣¬F ≤ 2γt log ∣A∣.

Plugging this in Eq. D.23 and using Eq. D.18 and D.22, we get the bound

Hµ′+8ε′
min (AJ ∣JXJYJT

t
1Ωn

1EAS)ρ∣¬F
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≥ t((1 − α)Fα,ν(ωth) −O (

√
µ

νγ
) − h(2(ν + α + δ1)) − 2 log ∣A∣γ) −O(1) (D.25)

Note that

Hµ′+8ε′
min (AJ ∣JT

t
1Ωn

1EXSAS)ρ∣¬F ≥Hµ′+8ε′
min (AJ ∣JXJYJT

t
1Ωn

1EAS)ρ∣¬F . (D.26)

Using the bound in Eq. D.25 in the equation above, we have a linear lower bound for the
smooth min-entropy of Alice’s raw key (AJ) with respect to Eve’s state (JT t1Ωn

1EXSAS):

Hµ′+8ε′
min (AJ ∣JT

t
1Ωn

1EXSAS)ρ∣¬F

≥ t((1 − α)Fα,ν(ωth) −O (

√
µ

νγ
) − h(2(ν + α + δ1)) − 2 log ∣A∣γ) −O(1) (D.27)

D.3.4. Information reconciliation cost

In the one-shot setting, the information reconciliation cost, denoted as leakIR, is given
by Hε′′

max(Â
t
1∣B̂

t
1I
t
1)ρ∣¬F up to a constant (see [AF20, Section 4.2.2] for additional details).

We have already bound the entropy Hε′′
max(B̂

t
1∣Â

t
1I
t
1)ρ∣¬F in Eq. D.17. The same argument

and bound can also be used for the entropy above. So, we have

leakIR ≤Hε′′

max(Â
t
1∣B̂

t
1I
t
1)ρ∣¬F +O(1) ≤ t ⋅ h(2(ν + α + δ1)) +O(1) (D.28)

for ε′′ ∶= e−Ω(δ21γt)√
Pr(¬F ) = e

−Ω(n).

D.3.5. Key length

Up to a constant factor the key length is given by

Hµ′+8ε′
min (AJ ∣JT

t
1Ωn

1EXSAS)ρ∣¬F − leakIR

≥ t((1 − α)Fα,ν(ωth) −O (

√
µ

νγ
) − 2h(2(ν + α + δ1)) − 2 log ∣A∣γ) −O(1) (D.29)

where α, ν ∈ (0,0.1) are parameters for the 3CHSH⊥ game, and the rest of the parameters
are chosen as:

δ ∈ (0,1) (D.30)

t =
δ

log ∣A∣∣B∣ + δ
n (D.31)

ε = O (
δ1/16

α3 ) (D.32)
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µ = O (ε1/6 (log 1
ε
)

1/3
) (D.33)

µ′ ∶= 2
√

µ

Prρ(¬F )
= O (ε1/12 (log 1

ε
)

1/6
) (D.34)

δ1 ∈ (0,1) (D.35)

and ε′ = Ω(1) ∈ (0,1) such that µ′ + ε′ < 1. We have assumed here that Pr(¬F ) ≥ 2µ.
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