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Abstract

The work in this thesis can be divided into three parts. The first two parts deal with optical
quantum communication protocols and the third part deals with quantum cryptography. The first
part of the thesis is a step towards reformulating quantum protocols in terms of coherent states.
Quantum communication protocols are typically formulated in terms of abstract qudit states and
operations. This leaves the question of an experimental realization open. Direct translation of
these protocols, say into single photons with some d-dimensional degree of freedom, are typi-
cally challenging to realize. Multi-mode coherent states, on the other hand, can be easily gen-
erated experimentally. Reformulation of protocols in terms of these states has been a successful
strategy for implementation of quantum protocols. Quantum key distribution and the quantum
fingerprinting protocol have both followed this route. In Chapter 3, we characterize the Gram
matrices of multi-mode coherent states in an attempt to understand the class of communication
protocols, which can be implemented using these states. We also derive the closure of the Gram
matrices, which can be implemented in this way, so that we also characterize those matrices,
which can be approximated arbitrarily well using multi-mode coherent states.

In the second part of the thesis, Chapter 4, we describe our collaboration with an experimen-
tal group to implement the quantum fingerprinting protocol and examine the tradeoffs between
the resources required to implement such protocols. It is seen that it is difficult to implement the
quantum fingerprinting protocol experimentally for large input sizes. This leads us to study the
tradeoff between the two resources expended during optically implemented simultaneous mes-
sage passing communication protocols: the duration of the protocol and the energy required to
run it. We derive general bounds on the growth of these quantities which are valid for all optical
protocols. We also develop tighter bounds for the growth of these resources for protocols imple-
menting quantum fingerprinting with coherent states.

Finally in Chapter 5, we venture into quantum cryptography. We introduce a new setting for
two-party cryptography with temporarily trusted third parties. In this setting, in addition to Alice
and Bob, there are third parties, which Alice and Bob both trust to be honest during the course
of the protocol. However, once the protocol concludes, there is no guarantee over the behaviour
of these third parties. It is possible that they collaborate and act adversarially against the honest
parties. We implement a variant of bit commitment in this setting, which we call erasable bit
commitment. In this primitive, Alice has the choice of either opening or erasing her commitment
after the commit phase. The ability to ask for an erasure allows Alice to ask the trusted nodes
to erase her commitment in case the trust period is about to expire. However, this ability also
makes erasable bit commitment weaker than the standard version of bit commitment. In addition
to satisfying the security requirements of bit commitment, our protocol also does not reveal any
information about the commitment to the third parties. Lastly, our protocol for this primitive
requires a constant number of trusted third parties and can tolerate a small number of dishonest
trusted nodes as well as implementation errors.
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Chapter 1

Introduction

Quantum physics offers a wide range of possibilities for communication. It allows us to perform
tasks which were not possible earlier using classical devices. Such a qualitative quantum advan-
tage is typically seen in quantum cryptograhpic protocols like quantum key distribution [4, 5].
Quantitatively, on the other hand, quantum messages can be used to solve distributed communi-
cation problems more efficiently [6–9]. Moreover, quantum communication protocols have also
proved useful to experimentally demonstrate the benefits of quantum technologies [3,10,11]. As
quantum networks are established in the near future, it is expected that we will be able to fully
exploit the power of quantum communication.

However, there are still several quantum protocols which cannot yet be implemented exper-
imentally. One of the major reasons for this is that protocols are theoretically stated in terms of
qudit states, and general unitary and measurment operations. Arbitrary qudit states can possibly
have large entanglement between the particles which constitute these qudits. As a result, it is dif-
ficult to create and manipulate these states in an experiment. Recently, therefore, there has been
an effort to reformulate protocols in terms of quantum states which are easy to create and ma-
nipulate. Coherent states are the simplest states of light. Unlike other states of light, no complex
or expensive equipment is required to produce these states. All one needs to create these states
are lasers and attenuators. Further, they are also very robust to noise. For this reason, several
quantum communication protocols have been successfully implemented by reformulating them
in terms of coherent states and linear optics [3, 10, 11]. Understanding when and how we can
reformulate communication protocol in terms of coherent states and linear optics is, therefore,
of paramount importance. In Chapter 3, we take the first step towards developing such an under-
standing. We work towards understanding the geometry of coherent states by characterizing the
Gram matrices of coherent states. This allows us to understand when a set of general qudit states
used in a protocol can be replaced by a set of coherent states.

While Chapter 3 focusses on trying to make abstract protocols more amenable to experimen-
tal implementation, in Chapter 4, we focus on improving the existing optical implementations of
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quantum communication protocols, specifically the quantum fingerprinting protocol. The quan-
tum fingerprinting protocol solves an interesting problem in communication complexity with
exponentially lesser communication than what is possible classically. In this problem, Alice and
Bob need to send as small messages about their inputs as possible to a Referee, so that he can
determine if these inputs are equal or not. We describe our collaboration with experimentalists to
implement the quatum fingerprinting protocol in order to beat the classical information leakage
bound. During our discussions with the experimental team, we realized that even though the
protocol itself is relatively simple, implementing it experimentally for large inputs is difficult.
This naturally led us to consider the tradeoffs in the growth of the resources for implementing
communication protocols optically. We identify the mean number of photons and the number
of modes used as the resources which determine the energy required during the protocol and the
time needed to run the protocol. Tradeoff bounds on the growth of these two quantities are proven
using simple techniques from communication complexity. Indeed this is yet another testimony
to the power and generality of this theory. We further specialize to the case of coherent state
quantum fingerprinting protocols, and prove tighter tradeoff bounds for this case. In addition,
we show that the coherent state reformulation of the quantum fingerprinting protocol given by
Arrazola and Lütkenhaus [12] is almost optimal.

In Chapter 5, we turn our attention to cryptography. Certain cryptographic primitives, like
bit commitment, cannot be implemented even in the quantum setting without some assump-
tion, say on the computational capabilities or the memories of the dishonest parties [13]. There
are drawbacks to using functionalities built on such assumptions. The computational capabili-
ties of adversaries are continually growing, especially with the advent of quantum technologies.
Whereas implementations, based on the assumption of inherent noise in quantum memories, will
take a longer and longer time to run as the quality of these memories improves. We introduce a
new setting in the quantum regime: the temporarily trusted party setting to implement two-party
protocols. In two-party cryptographic protocols, the two parties, Alice and Bob, do not trust
each other. In the temporarily trusted party setting, in addition to these two parties, there are
third parties, which Alice and Bob both trust to be honest during the protocol. However, once the
protocol concludes, there is no guarantee over the behaviour of these parties. It is possible that
they collaborate and act adversarially. Therefore, we say that these third parties are temporarily
trusted. We develop a simple protocol for a variant of bit commitment in this setting. In addition
to the regular security requirements for bit commitment, our protocol also does not reveal any
information about the commitment to the third parties. The protocol is based on BB84 states,
which are already easy to implement optically. We believe that these states too can be substituted
with coherent states in the protocol.
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Chapter 2

Background

2.1 Introduction

In this chapter, we will provide a brief introduction to the topics and results we use throughout
this thesis. We assume that the reader is familiar with the basic elements of quantum information
like density matrices, quantum channels, measurements, etc. This chapter does not contain any
new results and is simply meant to provide the reader with sufficient background to understand
the results presented in this thesis and to point them to the right references in case they wish to
explore the topic further.

2.2 Basic Notation

In this thesis, vectors will be denoted by alphabets, and should be identified by their spaces. For
example, v ∈ Cn denotes a vector. We will use kets to denote physical quantum states. We use
the term quantum channel for a completely-positive and trace preserving (CPTP) linear map on
the set of matrices. For a matrix, P , the notation P ≥ 0 will be used to indicate that the matrix
is positive semidefinite. In Table 2.1, we list the notation for frequently used sets from linear
algebra. We provide additional notation in the following sections after introducing the relevant
concepts.
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Table 2.1: Notation for frequently used sets

L(X ,Y)
The set of linear operators from complex Euclidean space, X to complex
Euclidean space, Y .

L(X ) The set of linear operators from complex Euclidean space, X to itself.

U(X ,Y)
The set of isometries from complex Euclidean space, X to complex Euclidean
space, Y .

Herm(X ) The set of Hermitian operators in L(X ).
Pos(X ) The set of positive semidefinite operators in L(X ).
D(X ) The set matrices ρ ∈ Pos(X ) with Tr(ρ) = 1.
[n] The set {1,2,⋯, n}.

2.3 Distance measures

2.3.1 Matrix and channel norms

We use the Schatter p-norms for matrices. For a matrix X ∈ L(Cn,Cm), we define the Schatten
p-norm of X to be

∥X∥p ∶= (Tr((X†X)
p
2 ))

1
p .

These norms are in fact the same as the corresponding vector p-norms on the vector of singular
values of X , i.e., ∥X∥p = ∥s(X)∥p where s(X) represents the vector of the singular values of X .
In our study, we will be mostly concerned with the 1-norm and the 2-norm. These are

∥X∥1 = Tr((X†X)
1
2 ) =∑

i

si(X),

∥X∥2 = (Tr(X†X))
1
2 = (∑

i,j

∣Xij ∣
2)

1
2

.

The matrix 2-norm is convenient to use as it can be expressed in terms of the matrix elements.
The 1-norm or the trace norm is particularly useful for developing security definitions for cryp-
tographic protocols which are well motivated and composable [13–15]. In particular, the trace
norm characterizes ones ability to distinguish between two quantum states according to the
Holevo-Helstrom theorem.

Theorem 2.1 (Holevo-Helstrom theorem [16, Theorem 3.4]). Let ρ1, ρ2 ∈ D(Cn) be two quan-
tum states. Suppose ρ1 and ρ2 are both prepared with a probability of 1/2. Then, the probability
of successfully determining which state was prepared is at most

1

2
(1 +

1

2
∥ρ1 − ρ2∥1) .
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Throughout this thesis and particularly in Chapter 5, we use the symbol ≈ to compare two quan-
tum states using the trace distance. We say that ρ1 ≈ε ρ2 if 1/2∥ρ1 − ρ2∥1 ≤ ε.

We can use these matrix norms to define induced norms on the set of quantum channels. The
induced channel norm of a channel Φ ∶ L(X )→ L(Y) is given by

∥Φ∥1 ∶= max{∥Φ(X)∥1 ∶X ∈ L(X ) such that ∥X∥1}.

It can be seen from the definition of the induced channel norm that for a channel Φ and a matrix
X , we have

∥Φ(X)∥1 ≤ ∥Φ∥1∥X∥1.

This is a useful identity, especially when coupled with the following theorem.

Theorem 2.2 ( [16, Corollary 3.40]). Let Φ ∶ L(X ) → L(Y) be a quantum channel, that is, a
completely-positive and trace-preserving map, then it holds that ∥Φ∥1 = 1.

We see that the trace norm of a quantum state cannot increase under an action by a quantum
channel. This is the reason for the composability of security definitions based on the trace norm
[14].

2.3.2 Fidelity

The Fidelity function is also useful for quantifying the distance between two quantum states. The
fidelity of two quantum states ρ, σ ∈D(Cn) is defined as

F (ρ, σ) ∶= ∥
√
ρ
√
σ∥1.

According to Uhlmann’s theorem, the fidelity between two quantum states ρ and σ can also be
characterized as the maximum possible overlap of the purifications of these states.

Theorem 2.3 (Uhlmann’s theorem [16, Theorem 3.22]). Let ρA, σA ∈ D(Cn). Further, suppose
that ∣ψAR⟩ ∈ Cn ⊗Cn is a purification of ρA, i.e., TrR(∣ψAR⟩ ⟨ψAR∣) = ρA. Then, we have that

F (ρ, σ) = max{∣ ⟨ψ∣φ⟩ ∣ ∶ ∣φAR⟩ ∈ Cn ⊗Cn is a purification of σ}

The fidelity of two quantum states is also closely related to the trace norm between them.
This relationship between these two quantities is given by the Fuchs-van de Graaf inequalities.

5



Theorem 2.4 (Fuchs-van de Graaf inequalities [16, Theorem 3.33]). Let ρ, σ ∈ D(Cn) be quan-
tum states. For these we have that

1 −
1

2
∥ρ − σ∥1 ≤ F (ρ, σ) ≤

√

1 −
1

4
∥ρ − σ∥2

1

or equivalently,

1 − F (ρ, σ) ≤
1

2
∥ρ − σ∥1 ≤

√
1 − F (ρ, σ)2.

2.4 Quantum information theory

2.4.1 Von-Neumann entropies

Let X be a Hilbert space. We define the von-Neumann entropy or simply the entropy of a
quantum state ρ ∈D(X ) as

H(X)ρ ∶=∑
i

−λ(ρ)i log2(λ(ρ)i)

where {λ(ρ)i}i are eigenvalues of the matrix ρ.

Let X and Y be two Hilbert spaces. Using the above definition, we can define the mutual
information between registers X and Y for a bipartite state ρXY ∈D(X ⊗ Y) as

I(X ∶ Y )ρ ∶=H(X)ρ +H(Y )ρ −H(XY )ρ.

Mutual information I(X ∶ Y ) can be thought of as a measure of the information contained in
the register Y about register X . This description of mutual information is based on Shannon’s
Noisy Channel Coding Theorem (see for example [17]) and the Entanglement Assisted Classical
Capacity Theorem (see [18, 19]).

2.4.2 Min-entropy

Min-entropy is an entropic measure, which is useful for quantifying the adversary’s information
especially in cryptographic settings. Von-Neumann entropy based measures usually characterize
operations in the i.i.d and asymptotic limit. However, min-entropy is a one-shot entropy, i.e.,
it can be used to tightly characterize finite sized tasks without any assumption on the structure
of the states. As we will see, in particular, min-entropy can be used to characterize the task of
privacy amplification for finite sized strings. The precise definitions of min-entropy and smooth
min-entropy vary across literature. In this thesis, we follow the definitions given in Ref. [13].
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Definition 2.1 (Introduced in Ref. [14]). The min-entropy of a quantum state ρAB given B is
defined as

Hmin(A∣B)ρ ∶= − log2 (inf{Tr(σB) ∶ σB ≥ 0 and ρAB ≤ 1A ⊗ σB}) .

Furthermore, since the min-entropy is discontinuous as a function of the state ρAB, a smoothed
version of min-entropy is defined by taking a supremum over all states close to the original.

Definition 2.2 (Introduced in Ref. [14]; we follow the definition in Ref. [13]). The ε-smooth
min-entropy of a quantum state ρAB given B is defined as

Hε
min(A∣B)ρ ∶= sup{Hmin(A∣B)ρ̄ ∣ ρ̄AB ≥ 0,

1

2
∥ρ̄AB − ρAB∥1 ≤ Tr(ρAB)ε

and Tr( ¯ρAB) ≤ Tr(ρAB)}

To understand min-entropy better, we will focus our attention to the case where an honest
party holds the classical register X and the adversary holds a quantum register Q, which might
be correlated with X . In other words, the state ρXQ = ∑x p(X = x) ∣x⟩ ⟨x∣ ⊗ ρxQ is distributed
between the two parties, with the honest party holding classical register X and the adversary
holding Q. In such a scenario, a natural way to quantify the information held by the adversary
about stringX is to calculate the maximum average probability of him being able guess the string
in register X . This is given by

Pguess(X ∣Q) ∶= max
{Mx}x

{∑
x

p(X = x)Tr(Mxρ
x
Q)}

where the maximum is taken over all sets of possible POVMs {Mx}x. Then, it can be shown [20]
that in this case the min-entropy of X given Q as

Hmin(X ∣Q) ∶= − log2(Pguess(X ∣Q)).

We also point out that the smooth min-entropies satisfy the following important properties. For
ε ∈ [0,1) and quantum states ρAB, and σAB′ ∶= ΦB(ρAB) where ΦB is a channel on the register
B, we have

Hε
min(A∣B′)σ ≥H

ε
min(A∣B)ρ. (2.1)

This is called the data processing inequality for min-entropy [21, Theorem 6.2]. As a special
case of this inequality, observe that for ε ∈ [0,1) and a quantum state ρABC

Hε
min(A∣B) ≥Hε

min(A∣BC). (2.2)

Further, we also have the following chain rule [21, Lemma 6.8]. For ε ∈ [0,1) and a quantum
state ρABX , where X is a classical register, we have

Hε
min(A∣BX) ≥Hε

min(A∣B) − log2(dim(X))

7



Lastly, smooth min-entropy is particularly interesting to study since it tightly characterizes the
task of privacy amplification. If the smooth min-entropy of a string held by an honest party given
the adversary’s information is large, then the honest participant can use privacy amplification to
create a smaller key which is almost decoupled from the adversary. Privacy amplification can
be performed by applying a family of two-universal hash functions randomly on the string. A
family of functions Ext ∶ {0,1}n⊗R→ {0,1}` is said to be two-universal if for every x ≠ x′, we
have Prr[Ext(x, r) = Ext(x′, r)] ≤ 2−` where r ∈R R is chosen uniformly at random.

Theorem 2.5 (Privacy amplification theorem [14, 22]). Let Ext ∶ {0,1}n ⊗ R → {0,1}` be a
family of two-universal hash functions, and ρXQ a classical-quantum state. Further, suppose
ρXQR = ρXQ ⊗ τR, where τR is the completely mixed state, i.e., R is uniformly random. Then, we
have that

ρExt(X,R)QR ≈ε′ τ{0,1}` ⊗ ρQR

where ε′ = 2−
1
2
(Hε

min(X ∣Q)−`)−1 + 2ε

We have once again stated the theorem as it is stated in Ref. [13].

2.5 Background on quantum optics

We only require a few basic concepts from quantum optics for our purpose. We will cover all
of these briefly in this section. To begin, the Hilbert space for a single optical mode, H, is a
countably infinite dimension Hilbert space. Formally, we identify this Hilbert space with `2, the
set of all square summable sequences. If n̂ is the photon number operator on this Hilbert space,
then we can let {∣k⟩}∞k=0 be the eigenvectors of n̂. These form an orthonormal basis for H, and
are called the Fock basis. A concrete way to view H is as

H = {
∞

∑
k=0

xk ∣k⟩ ∶
∞

∑
k=0

∣xk∣
2 <∞} .

The photon number operator on this space is given by

n̂ ∶=
∞

∑
k=0

k ∣k⟩ ⟨k∣ .

The number operator on the Hilbert space of m-modes H⊗m is given by N̂ ∶= ∑
m
i=1 n̂i, where

n̂i ∶= I ⊗ ⋯ ⊗ n̂ ⊗ ⋯ ⊗ I (the number operator acting on the ith Hilbert space). Since, N̂ is
Hermitian, it can also be associated with a measurement. Using Eigenvalue decomposition,
write N̂ as N̂ = ∑

∞
n=0 nPn, where Pn is the projector onto the n-photon subspace, i.e.,

Pn = ∑
(n1,⋯,nm)∈Sn

∣n1, n2,⋯, nm⟩ ⟨n1, n2,⋯, nm∣

8



where Sn ∶= {(n1, n2,⋯, nm) ∶ ∑
m
i=1 ni = n}. The measurement corresponding to N̂ is the

measurement {Pn}n. We will also refer to the random variable corresponding to the measurement
result in this basis as N̂ . Thus, the probability of measuring n-photons in the state ρ will be
denoted by

Prρ[N̂ = n] = Tr(Pnρ).

The mean number of photons of the state is given by

Eρ[N̂] =
∞

∑
n=0

nPrρ[N̂ = n] = Tr(N̂ρ).

Finally, we note that the Markov inequality for N̂ (viewed as a random variable) implies that

Prρ[N̂ ≥ a] ≤
Eρ[N̂]

a
. (2.3)

2.5.1 Coherent states

We will be looking at coherent states and their properties for a large part of the thesis, in par-
ticular because it is easy to generate them experimentally. One can simply use lasers to create
coherent states as laser pulses approximate these states very well. These states also minimize the
uncertainty relation between the two phase quadratures of light and are the most classical states
of light [23–25].

However, we do not require a lot of background on coherent states. A (single-mode) coherent
state can be defined as the eigenstate of the annihilation operator, or simply the state

∣α⟩ = e−∣α∣
2/2

∞

∑
n=0

αn
√
n!

∣n⟩ (2.4)

for α ∈ C. It should be noted that we will use Greek alphabets inside kets to denote a coherent
state. A multi-mode coherent state [26] is simply

n

⊗
k=1

∣αk⟩

for {αk}nk=1 ⊂ C. We will use Cn to denote the set of n-mode coherent states.

Cn ∶= {eiφ
n

⊗
k=1

∣αk⟩ ∶ ∀ 1 ≤ k ≤ n, αk ∈ C, φ ∈ R}

This notation can be simplified, by using the map

∥ ⋅ ⟫ ∶ Cn Ð→ Cn
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which takes an amplitude vector, α = (α1 α2 ⋯ αn)
T
∈ Cn, and creates a multi-mode coherent

state using its components, that is,

∥α⟫ ∶=
n

⊗
k=1

∣αk⟩

Hence, Cn can be written as

Cn = {eiφ∥α⟫ ∶ α ∈ Cn, φ ∈ R} .

During Section 3.2, it will be seen that this notation arises naturally. Finally, we note that the
inner product between two coherent states is

⟨β∣α⟩ = exp(−
1

2
∣α∣2 −

1

2
∣β∣2 + β∗α).

2.6 Communication complexity

Communication complexity is the study of the number of bits two parties need to communicate
in order to be able to compute a function on their inputs. There are different models of
communication one can consider to quantify the communication complexity of a function. In
this thesis, we will mainly deal with the Simultaneous Message Passing (SMP). We will however
use results connecting the complexity of a function in the SMP model with the two-party
deterministic communication complexity of a function. In this section, we describe these
settings and the results we use in this thesis. We point the reader to the books [27,28] for a more
thorough introduction to this subject.

We begin with an overview of classical communication complexity. Consider two parties
Alice and Bob who wish to collaborate and compute a function f ∶ X ×Y → {0,1} on their inputs
x and y exactly using a deterministic protocol Π. The number of bits they need to communicate
with each other for this purpose is called the communication cost of the protocol on inputs x and
y and denoted by costΠ(x, y). The communication cost of the protocol is given by

cost(Π) ∶= max
x,y

{costΠ(x, y)}.

Further, we define the deterministic communication complexity of a function f to be the mini-
mum communication cost for computing f . That is,

D(f) ∶= min
π

cost{Π}

where the minimization is over all deterministic protocols Π which compute f exactly. The defi-
nitions given above can also be extended to randomized protocols which allow for an error ε ≥ 0
during the protocol. Typically two types of models for randomness are studied in communication
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complexity: shared randomness and private randomness. In the shared randomness setting, Alice
and Bob have access to an arbitrarily long random string, which they can use during the protocol.
Whereas in the private randomness setting, Alice and Bob can generate randomness only locally.
A randomized protocol Π is said to compute a function f with error at most ε, if for every pair
of inputs x, y we have

PrΠ[Π(x, y) ≠ f(x, y)] ≤ ε. (2.5)

The communication cost of the protocol is once again defined to be the maximum number of bits
which Alice and Bob may be required to communicate during the protocol, and the randomized
communication complexity of f is defined as the minimum protocol cost for computing f . We
omit the details for randomized protocols here, since knowledge of these will not be required
during this thesis.

The Simultaneous Message Passing (SMP) model is a more restricted setting in communi-
cation complexity. In the SMP model, there are three parties: Alice, Bob and a Referee. Alice
and Bob receive inputs x and y. These inputs are not visible to the Referee. Further, throughout
this thesis we consider the model where Alice and Bob have access to private randomness as
well. Models where Alice and Bob have access to shared resources like shared randomness (or
shared entanglement in the quantum case) are also studied, but we will not require these for the
purpose of this thesis. Alice and Bob both send messages to the Referee, so that he is able to
compute f(x, y) with high probability. It should be noted that Alice and Bob cannot view each
other’s messages in this setting. A protocol is said to compute function f with error at most ε
if it satisfies the condition in Eq. 2.5 for every input x, y. The communication cost of a SMP
protocol Π is the maximum number of bits Alice and Bob have to send to the Referee for any
input and randomness. The SMP communication complexity of computing a function f with
error at most ε denoted by R

∣∣
ε(f) is the minimum communication cost of any SMP protocol

which computes f with error at most ε.

We can define similar settings in the quantum case as well. In this thesis, however, we will
only consider quantum communication protocols in the SMP model. The setting of the model is
the same as the classical model above. However, now Alice and Bob can send quantum states
as messages to the Referee. In the model that we consider in this thesis, there are no shared
resources[1] between any of the parties. Now the communication cost of the protocol is quantified
using the maximum number of qubits sent by Alice and Bob during the protocol. Suppose Π is
a SMP quantum communication protocol, then we define costQΠ(x, y) to be the total number of
qubits sent by Alice and Bob to the Referee. As before, we define the quantum communication
cost of the protocol as

costQ(Π) ∶= max
x,y

{costQΠ(x, y)}.

[1]For example, one can consider variants of this model where Alice and Bob share entangled states.
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The quantum SMP communication complexity of computing f with error at most ε denoted by
Q
∣∣
ε(f) is

Q
∣∣
ε(f) ∶= min

Π
{costQ(Π)}

where the minimization takes place over protocols which compute f with error at most ε.

We will now state some well known results in communication complexity, which will be
used later on in this thesis. The following theorem shows that up to multiplicative factors the
communication complexity of function is the same for different errors.

Theorem 2.6 (Confidence Amplification; see for example Ref. [27]). Consider a function
f ∶ X × Y → {0,1} and 0 < ε < 1/2. In the classical SMP communication setting, we have
that

R
∣∣
ε(f) = O(R

∣∣

1/3
(f) log(1/ε)).

This result can easily be proven by having the parties repeat the same protocol many times
and by having the Referee output the majority outcome. A similar result is also valid for other
randomized settings and protocols. Thus, as long as the error of a protocol is below 1/3 [2],
we can convert it to a protocol with arbitrary non-zero error while keeping the order of the
communication the same. Moreover, for this reason it is also sufficient to consider the error to be
1/3 when studying randomized communication complexity. The next theorem provides a lower
bound for the classical SMP communication complexity of a function in terms of its deterministic
communication complexity.

Theorem 2.7 (Babai and Kimmel [29]). The classical SMP communication complexity of a func-
tion f ∶ X × Y → {0,1} satisfies

R
∣∣

1/3
(f) = Ω(

√
D(f)).

The following lower bound can be proven by observing that any q-qubit quantum state can be
specified using O(q2q) classical bit with exponential precision (see for example Ref. [7, Section
2]).

Theorem 2.8. For any function f ∶ X × Y → {0,1}, the quantum and classical SMP communi-
cation complexities are related as follows

Q
∣∣
ε(f) = Ω(log(R

∣∣
ε(f))).

[2]In fact, we only need the error to be strictly smaller than 1/2.
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Chapter 3

Characterization of Gram matrices of
multi-mode coherent states

3.1 Introduction

It has been shown that the use of quantum resources offers significant qualitative and quantitative
advantages over classical communication for several problems. Quantum cryptographic proto-
cols are a prominent example of the qualitative advantage, while numerous protocols demon-
strating the quantitative advantage in terms of communication or information complexity have
been developed [6–9]. The theoretical description of these protocols is usually given in terms
of d-dimensional quantum systems, or qudits. However manipulation and control of these sys-
tems still remains a challenge. Due to this reason the question of experimental implementation
of these protocols is also left open. The most successfully implemented quantum protocols are
ones which have been reformulated in terms of coherent states, which can be produced using
lasers, and linear optics. Widely celebrated quantum key distribution [10, 30, 31] and quantum
fingerprinting protocols [3, 11, 12] fall in this category, and as always there is a great impetus
towards realizing more protocols using these tools [32–34].

Consider the quantum fingerprinting protocol as an example. The protocol solves the Equal-
ity problem in the simultaneous message passing model. Essentially two parties have to check
whether the strings they hold are equal or not in the absence of shared randomness and with as
little communication as possible. In 2001, Buhrman et al. gave a quantum protocol for this prob-
lem [7], which required exponentially less communication than the optimal classical protocol
for this task. It was not until 2015 [11] though, that the protocol was implemented experimen-
tally. This implementation became possible after the protocol had been reformulated such that
it required only coherent states and linear optics, in a way which also preserved the communi-
cation cost [12]. The original protocol mapped the set of n-bit strings, {si}2n

i=1 to qudit states,
{∣ψi⟩}2n

i=1 ⊂ Hq, such that for i ≠ j, the overlap, ∣ ⟨ψi∣ψj⟩ ∣ ≤ δ for some δ, and dim(Hq) = O(n).
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It should be observed that this is in fact a constraint on the Gram matrix of the vectors. Us-
ing this mapping, they showed that one could decide if two strings were equal or unequal by
communicating only O(logn) qubits. Arrazola et al. [12] showed that one could instead choose
multi-mode coherent states which satisfy the requirements on the overlap for the protocol. This
naturally leads us to ask under what conditions can the vectors forming a Gram matrix be chosen
as multi-mode coherent states, so that a protocol implemented by them may be run using coher-
ent states.

This is the question we answer in this chapter. We characterize the set of Gram matrices of
coherent states and their closure. Not only will such a characterization help us in reformulat-
ing quantum protocols in terms of coherent states, but it will also shed light on the fundamental
properties of sets of coherent states, which are the most classical states of light [23–25]. A Gram
matrix of a set of quantum states encodes the information about their orientation relative to each
other. For this reason, we can very often exchange one set of states with another in a protocol if
their Gram matrices are the same, though the measurements also need to be changed correspond-
ingly[1]. Additionally, the set of states attainable by applying physical tranformations on an initial
set of states also depends on the Gram matrix of the initial set of states [35, 36]. Therefore, our
work also characterizes all the set of states attainable from a set of multi-mode coherent states.

The chapter is organised as follows. In Section 3.2, we completely characterize the set of
Gram matrices, which can be constructed using multi-mode coherent states. This result is stated
as Theorem 3.1. We provide a test to check if a matrix belongs in this set. We show that the
Hadamard exponential of Euclidean distance matrices can be written as a Gram matrix of multi-
mode coherent states, which proves that they are positive semidefinite. Moreover in Section 3.3,
we derive the closure of this set to characterize the Gram matrices, which can be approximated
arbitrarily well using multi-mode coherent states. This characterization is presented in Theorem
3.2.

3.2 Characterization of Gram matrices of multi-mode coher-
ent states

Throughout this Chapter, we will consider general multi-mode coherent states. We choose to
study these states due to the relative ease with which one can implement them. A coherent state
can simply be thought of as a pulse of laser. On the other hand, we can implement a multi-mode
coherent state using a sequence of laser pulses. In this case, the modes are chosen to be the
temporal modes. We begin by recalling some notation introduced in Chapter 2. Recall that for

[1]If two sets of vectors have the same Gram matrix, then one can transform one set into the other using an
isometry.
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an amplitude vector α ∈ Cn, the corresponding n-mode coherent state is given by

∥α⟫ ∶=
n

⊗
k=1

∣αk⟩ .

We use Cn to denote the set of n-mode coherent states.

Cn ∶= {eiφ
n

⊗
k=1

∣αk⟩ ∶ ∀ 1 ≤ k ≤ n, αk ∈ C, φ ∈ R}

= {eiφ∥α⟫ ∶ α ∈ Cn, φ ∈ R} .

The following notation will be used to denote the standard inner product on a Hilbert Space, H.

⟨ ⋅ , ⋅ ⟩ ∶ H ×H Ð→ C

As an example, the inner product between two multi-mode coherent states, ∥α⟫ and ∥β⟫ will be
denoted as ⟨∥α⟫, ∥β⟫⟩. Finally, we also define a function which takes an n-tuple of vectors and
maps them to their Gram matrix.

Definition 3.1. For a Hilbert space, H, we define G to be the function which takes vectors
v1, v2,⋯, vn ∈ H and maps them to their Gram matrix.

G ∶ Hn → Pos(Cn)

(G (v1, v2,⋯, vn))ij ∶= ⟨vi, vj⟩ for 1 ≤ i, j ≤ n (3.1)

Given this definition of G, we can introduce the notation,

G(Sn) = {G(v1, v2,⋯, vn) ∶ v1, v2,⋯, vn ∈ S} .

where S ⊂ H is a set of vectors.

In this section, we will prove a theorem which characterizes Gram matrices of multi-mode
coherent states. Namely, we will answer the question: can we write a Gram matrix P , as
P = G(eiφ1∥α1⟫, eiφ2∥α2⟫, ⋯ , eiφn∥αn⟫)?

If indeed the matrix P is a gram matrix of multi-mode coherent states, then for every i, j

Pij = ⟨eiφi
m

⊗
k=1

∣αik⟩ , e
iφj

m

⊗
k=1

∣αjk⟩⟩

for some given number of modes, m ∈ N, a set of amplitudes, {αjk ∶ j ∈ [n], k ∈ [m]} and a set
of real phases, {φi ∶ i ∈ [n]}. Let us further simplify this:

Pij = e
i(φj−φi)

m

∏
k=1

⟨∣αik⟩ , ∣αjk⟩⟩

= ei(φj−φi)
m

∏
k=1

exp(−
1

2
(∣αik∣

2 + ∣αjk∣
2 − 2α∗ikαjk))

= exp(i (φj − φi) −
1

2

m

∑
k=1

(∣αik∣
2 + ∣αjk∣

2 − 2α∗ikαjk)) .
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Define, the vector, αi ∶= (αi1 αi2 ⋯ αim)
T
∈ Cm, and the vector of phases,

φ ∶= (φ1 φ2 ⋯ φn)
T
∈ Rn for every i ∈ [n]. This naturally gives rise to the notation men-

tioned earlier for multi-mode coherent states. The inner product can be written as

Pij = exp(−
1

2
(∥αi∥

2
2 + ∥αj∥

2
2 − 2⟨αi, αj⟩) + i (φj − φi)) (3.2)

or equivalently,

Pij = exp(−
1

2
∥αi − αj∥

2
2 + i (Im{⟨αi, αj⟩} + (φj − φi))) . (3.3)

For a particular branch of the ln functions Eqs. 3.2 and 3.3 are equivalent to the existence of
{Nij}i,j ⊂ Z for which

ln(Pij) − i2πNij = −
1

2
(∥αi∥

2
2 + ∥αj∥

2
2 − 2⟨αi, αj⟩)

+ i (φj − φi) (3.4)

or equivalently,

ln(Pij) − i2πNij = −
1

2
∥αi − αj∥

2
2

+ i (Im{⟨αi, αj⟩} + (φj − φi)) (3.5)

holds for every i, j ∈ [n].

In the Lemma that follows, we characterize matrices Q which satisfy

Qij = −
1

2
(∥αi∥

2
2 + ∥αj∥

2
2 − 2⟨αi, αj⟩) + i (φj − φi)

for some set of complex vectors {αi}i, and real phases, {φi}i. For the statement of this Lemma,
we define the vector, u ∈ Cn to be the vector of all ones, i.e.,

u ∶= (1 1 ⋯ 1)
T

Lemma 3.1. For a matrix, Q ∈ L(Cn), the following are equivalent:

(I) There exists m ∈ N, a set of complex vectors {αi ∶ i ∈ [n]} ⊂ Cm, and a set of real phases
{φi ∶ i ∈ [n]} ⊆ R such that for i, j ∈ [n],

Qij = −
1

2
(∥αi∥

2
2 + ∥αj∥

2
2 − 2⟨αi, αj⟩) + i (φj − φi) . (3.6)

(II) Q ∈ Herm(Cn), Qii = 0 for all i ∈ [n] and there exists a vector, x ∈ Cn, such that

Q + xu† + ux† ≥ 0. (3.7)
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(III) Q ∈ Herm(Cn), Qii = 0 for all i ∈ [n] and for every vector, s ∈ Cn, such that ⟨u, s⟩ = 1, it
holds that

(1 − us†)Q (1 − su†) ≥ 0. (3.8)

(IV) Q ∈ Herm(Cn), Qii = 0 for all i ∈ [n] and there exists a vector, s ∈ Cn, such that ⟨u, s⟩ = 1
and

(1 − us†)Q (1 − su†) ≥ 0. (3.9)

(V) Q ∈ Herm(Cn), Qii = 0 for all i ∈ [n] and for every vector, y ∈ Cn, such that ⟨u, y⟩ = 0, it
holds that

y†Qy ≥ 0. (3.10)

Proof. In the characterization presented here,Q behaves similar to a Euclidean distance matrices
[37,38]. The equation of the inner products of the vectors in statement I of the Lemma is similar
to the equation for an element of a distance matrix. The proofs of these statements are almost
the same as the ones given by Gower in Ref. [37] for the characterization of Euclidean distance
matrices. It should be noted however that Q here is not a distance matrix, since its entries may
be complex. We will prove the statements of the theorem in the order

(I)⇒ (II)⇒ (I)
(II)⇒ (III)⇒ (IV)⇒ (II)
(III)⇒ (V)⇒ (III).

We will prove that statement (I) ⇒ statement (II). It is clear from Eq. 3.6 that Q is Hermitian
and that for every i ∈ [n], Qii = 0. Let H be the Gram matrix of the vectors, {αi}ni=1, that is,
Hij ∶= ⟨αi, αj⟩. Then, we have that H is positive semidefinite, since the set of Gram matrices and
positive semidefinite matrices is equivalent. We can write Eq. 3.6 as

Qij = i (φj − φi) −
1

2
(Hii +Hjj − 2Hij) . (3.11)

Without loss of generality let, H = Q+X for some X . Then, Hii = Qii +Xii = 0+Xii =Xii. We
substitute this into Eq. 3.11 to derive a consistency equation for X .

Qij = i (φj − φi) −
1

2
(Xii +Xjj − 2Qij − 2Xij)

⇒Xij = (
1

2
Xii + iφi) + (

1

2
Xjj − iφj)

Define x ∈ Cn, as xi ∶= Xii/2 + iφi (Xii = ∥αi∥2
2 ∈ R, and φi ∈ R). Then, for i, j ∈ [n] we may

write

Xij = xi + x
∗
j ,
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which is equivalent to

X = xu† + ux†. (3.12)

Therefore, if statement (I) is true, then H = Q + xu† + ux† ≥ 0. Thus statement II is true.

For the converse, statement (II) ⇒ statement (I), assume that Q ∈ Herm(Cn), for every
i ∈ [n] Qii = 0 and that there is a vector, x ∈ Cn, such that Q + xu† + ux† ≥ 0. Let H ∶= Q+xu† +

ux†. Then, there exists a set of vectors, {αi}ni=1, such that Hij = ⟨αi, αj⟩, since H is positive
semi-definite. We can now show that these amplitude vectors satisfy Eq. 3.6 for an appropriate
definition of φ. To see this, observe that

Hij = Qij + xi + x
∗
j

Hii = xi + x
∗
i .

Now let’s evaluate the following expression.

∥αi∥
2
2+∥αj∥

2
2 − 2⟨αi, αj⟩

=Hii +Hjj − 2Hij

= xi + x
∗
i + xj + x

∗
j − 2Qij − 2xi − 2x∗j

= −2Qij − (xi − x
∗
i ) + (xj − x

∗
j )

= −2Qij − 2iIm{xi} + 2iIm{xj}

Define, φ ∈ Rn, such that φi ∶= Im{xi} ∈ R. Then, the right hand side of Eq. 3.6 is

−
1

2
(∥αi∥

2
2 + ∥αj∥

2
2 − 2⟨αi, αj⟩) + i (φj − φi)

= (Qij + iIm{xi} − iIm{xj}) + i (Im{xj} − Im{xi})

= Qij.

Hence, given statement (II) one can define a set of amplitude vectors, {αi}ni=1 ⊆ Cn, and a vector
of phases, φ ∈ Rn such that Eq. 3.6 is satisfied for all i, j ∈ [n]. Therefore, (I)⇔ (II).

For all the rest of the statements the facts Q ∈ Herm(Cn) and Qii = 0 for every i ∈ [n] are
common. So, we don’t need to prove them for each statement. We will assume these and prove
the rest of the statements. To see that statement (II)⇒ statement (III), choose a vector, s ∈ Cn,
such that ⟨u, s⟩ = 1. We note that for any such choice

(1 − us†)xu† (1 − su†)

= (1 − us†) (xu† − x(u†s)u†)

= 0. (3.13)
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Using the fact that the expression in Eq. 3.13 and its conjugate are zero, we can now show,
starting with statement (II), that

H ∶= Q + xu† + ux† ≥ 0

⇒ (1 − us†)H (1 − su†) ≥ 0

⇒ (1 − us†)Q (1 − su†) ≥ 0.

This proves that statement (II)⇒ statement (III). Statement (III)⇒ statement (IV) trivially.

For statement (IV)⇒ statement (II), assume that the vector, s ∈ Cn is such that ⟨u, s⟩ = 1, and

(1 − us†)Q (1 − su†) ≥ 0.

We can write the above as

Q + xu† + ux† ≥ 0,

for the choice, x ∶= 1
2 (s†Qs)u −Qs. Hence, we have shown the equivalence of the first four

statements.

For statement (III) ⇒ statement (V), we have that (1 − us†)Q (1 − su†) ≥ 0 for every
s ∈ Cn such that ⟨u, s⟩ = 1 using statement (III). Then, for every vector, y ∈ Cn, such that,
⟨u, y⟩ = 0,

y† (1 − us†)Q (1 − su†) y ≥ 0

⇒ y†Qy ≥ 0.

For statement (V) ⇒ statement (III), we assume that for every vector, y ∈ Cn, such that,
⟨u, y⟩ = 0,

y†Qy ≥ 0.

If we choose any vector s ∈ Cn such that ⟨u, s⟩ = 1, and any vector v ∈ Cn, then we can construct
a vector y with ⟨u, y⟩ = 0 by setting y = (1 − su†)v. Using statement (V) with this choice of
vector y then gives

v† (1 − us†)Q (1 − su†) v ≥ 0

⇒ (1 − us†)Q (1 − su†) ≥ 0,

which proves statement (V)⇒ statement (III).

We can use this Lemma to check if a matrix is a Gram matrix of multi-mode coherent states.
First, we define the Hadamard logarithm, as

(ln⊙(P ))ij ∶= lnPij.
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Using Eq. 3.4 and Lemma 3.1, we have that a matrix P such that Pii = 1 for every i ∈ [n] is
Gram matrix of coherent states if and only if there exists a matrix of integers N ∈ Zn×n such that
(ln⊙(P ) − 2πiN) ∈ Herm(Cn), 2πiNii = ln 1 for every i ∈ [n] and

(1 −
uu†

n
) (ln⊙(P ) − 2πiN) (1 −

uu†

n
) ≥ 0.

However, in this form this condition cannot be checked since there are countably infinite choices
for the matrix, N . Now, we will show that we only need to check this condition for a finite
number of matrices, N . First, we show that if a matrix can be written as a Gram matrix of
multi-mode coherent states, then one of the coherent states can be chosen as ∥0⟫.

Lemma 3.2. If P = G(eiφ1∥α1⟫, eiφ2∥α2⟫, ⋯ , eiφn∥αn⟫), then
P = G(eiφ

′

1∥0⟫, eiφ
′

2∥α′2⟫, ⋯ , eiφ
′

n∥α′n⟫), where α′i = αi − α1, and φ′i = φi − Im{⟨αi, α1⟩}

for every i ∈ [n].

Proof. This can be proven by just plugging in the values given above in Eq. 3.3.

Our goal is to restrict the values the matrix element Nij can take. We accomplish this by
using a complex ln function mapping to the branch, [β, β + 2π) in the following equation.

ln(Pij) = −
1

2
∥αi − αj∥

2
2

+ i (Im{⟨αi, αj⟩} + (φj − φi) + 2πNij) (3.14)

The imaginary part on the left hand side of Eq. 3.14 is restricted to the interval [β, β + 2π). If
we can bound the terms in the imaginary part on the right hand side, then we would be able to
bound the terms Nij as well. For this purpose, we define the parameter,

δ ∶= min
i,j

∣Pij ∣. (3.15)

If δ = 0, then we know that P ∉ G(C n
m), since the inner product between two coher-

ent states cannot be zero (see Eq. 3.2). So, we consider δ ≠ 0. If P ∈ G(C n
m), then

P = G(eiφ1∥α1⟫, eiφ2∥α2⟫, ⋯ , eiφn∥αn⟫) for some amplitude vectors, {αi}ni=1 with α1 = 0 and
real phases, {φi}ni=1 (using Lemma 3.2). Moreover, we can assume that for every i ∈ [n],
φi ∈ [0,2π). Then, for every i, j ∈ [n] we have that

−2π ≤ φj − φi ≤ 2π. (3.16)

For a matrix P ∈ G(C n
m), we have

δ = min
i,j

{exp(−
1

2
∥αi − αj∥

2
2)}

= exp(−
1

2
(max

i,j
{∥αi − αj∥2})

2

) .
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This implies that

max
i,j

{∥αi − αj∥2} = (−2 ln(δ))1/2.

For every i ∈ [n], and amplitude vector, αi in this representation of P , we have

∥αi∥2 = ∥αi − 0∥2

= ∥αi − α1∥2

≤ max
i,j

{∥αi − αj∥2} = (−2 ln(δ))1/2.

Further, we have that for every i, j ∈ [n]

∣⟨αi, αj⟩∣ ≤ ∥αi∥2∥αj∥2

≤ −2 ln(δ) = ∣2 ln(δ)∣.

We will use this to bound the Im{αi, αj}, using

∣Im{⟨αi, αj⟩}∣ ≤ ∣⟨αi, αj⟩∣ ≤ ∣2 ln(δ)∣ (3.17)

Now, observe that in Eq. 3.14 if we consider the ln function with [β, β + 2π) branch, for every
i, j ∈ [n] we have

β ≤ 2πNij + Im{⟨αi, αj⟩} + (φj − φi)

⇒ β − Im{⟨αi, αj⟩} − (φj − φi) ≤ 2πNij

⇒ β − ∣2 ln(δ)∣ − 2π ≤ 2πNij,

and,

2πNij + Im{⟨αi, αj⟩} + (φj − φi) < β + 2π

⇒ 2πNij < β + 2π − Im{⟨αi, αj⟩} − (φj − φi)

⇒ 2πNij < β + 4π + ∣2 ln(δ)∣,

for which we have used Eqs. 3.16 and 3.17. Thus for every i, j ∈ [n] we have the following
bound:

Nij ∈ Z ∩ [
β

2π
−

1

π
∣ ln(δ)∣ − 1,

β

2π
+

1

π
∣ ln(δ)∣ + 2) . (3.18)

To summarize, we have proven that if P ∈ G(C n
m), then there exists an integer matrix N ∈ Zn×n

with elements in the range given by Eq. 3.18 and a set of vectors, {αi}i (where α1 = 0 specifi-
cally) and phases, {φi}i, such that for every i, j

ln(Pij) − i2πNij = −
1

2
(∥αi∥

2
2 + ∥αj∥

2
2 − 2⟨αi, αj⟩)

+ i (φj − φi) .

21



Using the characterization of matrix equations of this form given in Lemma 3.1, we have that
this is equivalent to (ln⊙(P ) − 2πiN) being a Hermitian matrix, 2πiNii = ln(1) for every i ∈ [n]
and

(1 −
uu†

n
) (ln⊙(P ) − 2πiN) (1 −

uu†

n
) ≥ 0.

Thus, we have proven the following Theorem, which characterizes the Gram matrices of multi-
mode coherent states. Here we consider the ln function with the branch [β, β + 2π).

Theorem 3.1. For a matrix, P ∈ Herm(Cn) such that Pii = 1 for all i ∈ [n], P ∈ G(C n
m)

for some m ∈ N if and only if there exists an integer matrix N ∈ Zn×n, such that
(ln⊙(P ) − 2πiN) ∈ Herm(Cn), 2πiNii = ln(1) for every i ∈ [n], and

(1 −
uu†

n
) (ln⊙(P ) − 2πiN) (1 −

uu†

n
) ≥ 0. (3.19)

Further, we can restrict the range of the elements of N to the following:

Nij ∈ Z ∩ [
β

2π
−

1

π
∣ ln(δ)∣ − 1,

β

2π
+

1

π
∣ ln(δ)∣ + 2) (3.20)

for every i, j ∈ [n], where δ ∶= mini,j ∣Pij ∣ > 0.

Note that Eq. 3.19 can be replaced with any of the statements from Lemma 3.1. We have
used s = u/n in the statements III and IV of Lemma 3.1 for simplicity. Moreover, for every
matrix P ∈ Herm(Cn) we only need to check Eq. 3.19 for finitely many matrices, N . However,
we need to check the conditions for exp(O(n2)) number of matrices N , where n is the size of
the matrix P . It might be possible to use semidefinite programming and rounding methods to
create a more efficient algorithm for this task but we do not pursue this lead here.

In the following corollary, we show that we can restrict the number of modes of the coherent
states forming a Gram matrix to the size of the matrix.

Corollary 3.1. For every m ∈ N, G (C n
n+m) = G (C n

n ).
That is, no more than n-modes are required to represent a Gram matrix of n-vectors.

Proof. A matrix P ∈ Herm(Cn) with Pii = 1 for every i ∈ [n] can be written as a Gram matrix
of coherent states if and only if there exist complex amplitude vectors, {αi}ni=1 ⊂ Cm (where m
is the number of modes) and a set of real phases {φi}ni=1 such that

Pij = exp(−
1

2
(∥αi∥

2
2 + ∥αj∥

2
2 − 2⟨αi, αj⟩) + i (φj − φi)) .

It is clear from the above equation that the collection of vectors, {αi}ni=1, is isometrically invari-
ant, i.e., if {αi}ni=1 satisfy this equation, then for a U ∈ U(Cm,Cp), the vectors {Uαi}ni=1 also
satisfy this equation. Therefore, one can simply constrain the vectors, {αi}ni=1, to be in an n-
dimensional space (since there are only n vectors), i.e., we can choose the number of modes
m = n.
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Corollary 3.1 tells us that one cannot do better by simply increasing the number of modes.
With this result in hand, we can see that the set of Gram matrices, which can be constructed
using coherent states, is just G(C n

n ). Therefore, in Section 3.3, where we study the closure of
the set of Gram matrices of multi-mode coherent states, we will just consider the set G(C n

n ).

We will demonstrate our characterization result by using it to show that n multi-mode coher-
ent states, {eiφi∥αi⟫}ni=1 can be chosen such that for i ≠ j the inner product ⟨eiφi∥αi⟫, eiφj∥αj⟫⟩ =
r for some r ∈ (0,1]. That is, we can choose acute equiangular multi-mode coherent states.

Example 3.1. Acute equiangular coherent states
To show that coherent states with the aforementioned property exist, we show that the Gram
matrix, P ∈ Herm(Cn) such that Pii = 1 for every i ∈ [n], and Pij = r (where r ∈ (0,1]) for
every i ≠ j ∈ [n], can be constructed using coherent states. For this we choose the ln function
with [−π,π) branch. Then, ln⊙P is Hermitian. Moreover, lnPii = 0 for every i ∈ [n], and
lnPij = ln(r) for every i ≠ j ∈ [n]. That is,

ln⊙P = ln(r)uu† − ln(r)1.

Then, we have that

(1 −
uu†

n
) (ln⊙P ) (1 −

uu†

n
)

= ln(
1

r
)(1 −

uu†

n
) ≥ 0.

Thus, we can choose n coherent states, such that the inner products between any two of these
states is equal to some r ∈ (0,1].

We can also use our characterization to prove that the Hadamard exponential of a Euclidean
distance matrices is positive semidefinite. We will formulate this result as Corollary 3.2. A
matrix, D ∈ L(Rn) is a Euclidean distance matrix if there exist vectors, {αi}ni=1 ⊂ Rn, such that
for i, j ∈ [n]

Dij = −
1

2
∥αi − αj∥

2
2.

In Ref. [37] it has been proven that a matrix is a Euclidean distance matrix if and only if

(1 −
uu†

n
)D (1 −

uu†

n
) ≥ 0. (3.21)

Lastly, we define the Hadamard exponential of a matrix, X as the component wise exponential
of a matrix. That is,

(exp⊙(X))ij ∶= exp(Xij).
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Corollary 3.2. The Hadamard exponential of a Euclidean distance matrix,D is positive semidef-
inite. That is

exp⊙(D) ≥ 0. (3.22)

Proof. Let P ∶= exp⊙(D). Since, D is a Euclidean distance matrix, it is a real matrix and
Pij > 0 for every i, j. If we choose the ln function to be the lnarithm with the branch [−π,π),
then ln⊙(P ) =D. Using this fact, we have

(1 −
uu†

n
)D (1 −

uu†

n
) ≥ 0

⇒(1 −
uu†

n
) (ln⊙(P )) (1 −

uu†

n
) ≥ 0

⇒ P ∈ G(C n
n )

⇒ P ≥ 0

⇒ exp⊙(D) ≥ 0,

where we have used Theorem 3.1 in the third step and the fact that Gram matrices are positive
semidefinite in the fourth step.

One can, in principle use Theorem 3.1 to not only check if a given square matrix, P ∈ L(Cn)

(such that Pii = 1 for every i ∈ [n]) can be represented as a Gram matrix of coherent states or not,
but also to find a set of coherent states, {eiφi∥αi⟫}i such that P = G(eiφ1∥α1⟫, ⋯ , eiφn∥αn⟫).
One can use the following algorithm for example. Choose ln to be the logarithm with the branch
[−π,π). For the given matrix P , calculate δ ∶= mini,j ∣Pij ∣. Let

F ∶={N ∈ Zn×n ∶

Nij ∈ Z ∩ [−
3

2
−

1

π
∣ ln(δ)∣,

3

2
+

1

π
∣ ln(δ)∣)

for every i ≠ j ∈ [n], 2πiNii = ln(1)

for every i ∈ [n] and
(ln⊙(P ) − 2πiN) ∈ Herm(Cn)}.

be the set of possible integer matrices. Note that this set is finite. For every N ∈ F do the
following:

1. Let X ∶= (1 − ue†
1) (ln⊙(P ) − 2πiN) (1 − e1u†).

2. Check if X is positive semidefinite or not.
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(a) If it is positive semidefinite, then Theorem 3.1 (we are using an alternate but equiv-
alent version of the condition in Eq. 3.19 for convenience) guarantees that you can
write your matrix as a Gram matrix of multi-mode coherent states. Moreover, these
coherent states can be found by using the columns of X1/2 (this can be seen through
the proof of Lemma 3.1). If

X1/2 = (α1 α2 ⋯ αn)

where αi ∈ Cn for each i ∈ [n], then we have
P = G(eiφ1∥α1⟫, eiφ2∥α2⟫, ⋯ , eiφn∥αn⟫) for φi ∶= −Im{lnPi1} for each i ∈ [n].

(b) If it is not positive semidefinite, move to the next integer matrix in F .

Finally, if X is not positive semidefinite for any of the integer matrices N ∈ F , then P ∉ G(C n
n ).

Remark: If we replace e1 with u/n in the above algorithm, then X and X1/2 will have rank
at most (n − 1), which means that one could in fact choose vectors in Cn−1 to satisfy Eq.
3.2. Thus, we can choose (n − 1)−mode coherent states to construct any matrix in G(C n

n )

or, G(C n
n ) = G(C n

n−1). One can also see this through Lemma 3.2, which allows us to reduce
the rank of the amplitude vectors by at least 1. We state this result as Corollary 3.3, a slightly
strengthened form of Corollary 3.1.

Corollary 3.3. For n,m ∈ N and n ≥ 2, G (C n
n−1+m) = G (C n

n−1).

However, we will continue to use G (C n
n ) to represent the Gram matrices of n multi-mode

coherent states for notational convenience.

Since, it seems hard to decide if a Gram matrix P lies in G(C n
n ) or not, we provide two

Corollaries, which would be helpful in deciding this question in certain cases. Both of these rely
on the fact that it is easy to check if a matrix is a Euclidean distance matrix (EDM) (see Eq.
3.21).

Corollary 3.4. If P ∈ G(C n
n ), then the matrix R ∶= [ln(∣Pij ∣)]ij is a Euclidean distance matrix

(ln function considered here is the real logarithm function).

Proof. If P ∈ G(C n
n ), then for every i, j ∈ [n]

ln(∣Pij ∣) = −
1

2
∥αi − αj∥

2
2 (3.23)

for some complex vectors, {αk}nk=1 ⊂ Cn. Define, a 2n- dimensional vector βi ∶=

(Re{αi}, Im{αi}) for every i ∈ [n]. These vectors would also satisy Eq. 3.23. Further these
can be rotated into a n-dimensional space using an orthogonal matrix, which would leave the
distance between these vectors invariant. Hence, the matrix R would be an EDM.
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One may wonder if the converse also holds in Corollary 3.4, i.e., given that for a Gram matrix
P , the matrix R ∶= [ln(∣Pij ∣)]ij is a Euclidean distance matrix, does this imply P ∈ G(C n

n )? This
is seen not to be the case. A counterexample is the Gram matrix of three equiangular vectors in
two dimensions,

P =
⎛
⎜
⎝

1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1

⎞
⎟
⎠
.

The matrix R ∶= [ln(∣Pij ∣)]ij in this case is an EDM, but one can use the algorithm based on
Theorem 3.1 to show that P ∉ G(C n

n ). However, the converse does hold when all the elements
of the Gram matrix P are real and positive.

Corollary 3.5. If P ∈ Herm(Cn) and Pij ∈ R and Pij > 0 for every i, j ∈ [n], then P ∈ G(C n
n ) if

an only if ln⊙P is a Euclidean distance matrix (ln function considered here is the real logarithm
function).

Proof. The fact that if P ∈ G(C n
n ) then ln⊙P is a Euclidean distance matrix can be seen using

Corollary 3.4 in this case. For the other direction, since ln⊙P is an EDM, we can choose vectors
{αi}ni=1 ⊂ Rn such that for every i, j ∈ [n]

lnPij = −
1

2
∥αi − αj∥

2
2

⇔ Pij = exp(−
1

2
∥αi − αj∥

2
2) ,

which implies that P = G(∥α1⟫, ⋯ , ∥αn⟫) using the fact that αi are real vectors and Eq. 3.3.

We can also connect our work to the coherent state mapping presented in Ref. [39]. We will
assume that the entries of the Gram matrix, P are close to 1 (and Pii = 1 for all i ∈ [n]). That
is, the angles between the vectors forming the Gram matrix are small. In order to recreate this
Gram matrix using multi-mode coherent states, we need to find amplitude vectors, {αi}ni=1 ⊂ Cn,
a phase vector, φ ∈ Rn and an integer matrix such that Eq. 3.19 is satisfied. We choose the
[−π,π) branch of the ln function. Further, for convenience we assume that no element of P lies
on the negative real axis. In this case, ln⊙P is Hermitian, with zero diagonal. We will choose,
{αi}ni=1 ⊂ Cn, such that ∥αi∥2 = 1 for all i ∈ [n], φ = 0, and N = 0. For these choice, we need
{αi}ni=1 satisfying

ln(Pij) = −
1

2
(∥αi∥

2
2 + ∥αj∥

2
2 − 2⟨αi, αj⟩) + i (φj − φi)

= −
1

2
(2 − 2⟨αi, αj⟩) .

Using the assumption that the entries of P are close to 1,

Pij − 1 +O((Pij − 1)2) = −1 + ⟨αi, αj⟩

⇒ Pij ≈ ⟨αi, αj⟩.
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Thus, the problem of finding coherent states in this case reduces to finding unit vectors forming
the Gram matrix, P . This can be done easily by choosing {αi}ni=1 to be the columns of B for
any B such that P = B†B. Ref. [39] studies exactly this mapping of qudit states ({αi}i) to
multi-mode coherent states ({∥αi⟫}i). Our results show that this is indeed well motivated.

3.3 Closure of the set of Gram matrices of multi-mode coher-
ent states

The set of Gram matrices of n multi-mode coherent states, G(C n
n ) is not closed. For example,

one may construct Gram matrices arbitrarily close to the identity matrix using coherent states,
but the identity matrix itself cannot be constructed, since the inner products between any two
coherent states is never zero. In this section, we will characterize the closure of G(C n

n ), which
we will represent as G(C n

n ). This set consists of the Gram matrices which can be approximated
arbitrarily well using Gram matrices of coherent states. Experimentally G(C n

n ) is more relevant
than G(C n

n ). One expects that block diagonal Gram matrices, where each of the blocks is a
Gram matrix of coherent states, would lie in G(C n

n ). Each block could be realized by the set of
corresponding coherent states, and one could displace the amplitudes between the sets relative
to each other with a sufficiently large amplitude vector to achieve this. In fact, we will show that
all the matrices in G(C n

n ) can be put into such a block diagonal form. To prove this, we will
require two intermediate results, Lemmas 3.3 and 3.4. Lemma 3.3 relates the distance between
the amplitude vectors of two coherent states with their inner-product with each other and a third
coherent state. Lemma 3.4 shows that if a Gram matrix with non-zero entries belongs in G(C n

n ),
then it also belongs in G(C n

n ). Together these two will allow us to characterize G(C n
n ).

Lemma 3.3. If ∥α⟫, ∥β⟫, ∥γ⟫ ∈ Cn, are such that ∣⟨∥α⟫, ∥β⟫⟩∣ = pαβ and ∣⟨∥α⟫, ∥γ⟫⟩∣ = pαγ , then

(−2 lnpαγ)
1/2

+ (−2 lnpαβ)
1/2

≥ ∥β − γ∥2

≥ ∣(−2 lnpαγ)
1/2

− (−2 lnpαβ)
1/2

∣ . (3.24)

Proof. From Eq. 3.3, the following can be deduced:

∥α − β∥2 = (−2 ln (pαβ))
1/2

∥α − γ∥2 = (−2 ln (pαγ))
1/2
.

To establish the lower bound, we use the triangle inequality in the following manner.

∥γ − β∥2 = ∥ (γ − α) − (β − α) ∥2

≥ ∣∥γ − α∥2 − ∥β − α∥2∣

≥ ∣ (−2 lnpαγ)
1/2

− (−2 lnpαβ)
1/2

∣
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We use the triangle inequality again to establish the upper bound.

∥γ − β∥2 ≤ ∥γ − α∥2 + ∥β − α∥2

= (−2 lnpαγ)
1/2

+ (−2 lnpαβ)
1/2

Before we go on further, we would like to point out that if P ∈ G(C n
n ), then Pij ≠ 0 for all

i, j ∈ [n]. This can be seen from Eq. 3.2. In the lemma that follows, we prove that if a matrix
with non-zero entries belongs in G(C n

n ), then it also belongs in G(C n
n ).

Lemma 3.4. For P ∈ L(Cn) such that Pii = 1 for all i ∈ [n], if Pij ≠ 0 for all i, j ∈ [n], then
P ∈ G(C n

n ) if and only if P ∈ G(C n
n ).

Proof. P ∈ G(C n
n ) implies P ∈ G(C n

n ) is trivial. For the other direction, we have that, if
P ∈ G(C n

n ), then there exists a sequence, {Pk}∞k=1 ⊆ G(C n
n ) such that limk Pk = P under the

2-norm (where the 2-norm, ∥ ⋅ ∥2 is defined as ∥X∥2 = (Tr(X†X))1/2; all norms are equiva-
lent in a finite dimensional space [40], so we can choose the 2-norm without loss of gener-
ality). Firstly, observe that P ∈ Pos(Cn) and that Pii = 1 for all i ∈ [n], since these sets are
closed. Moreover, this implies the existence of integer matrices, {Nk}

∞
k=1 ⊂ Zn×n, for which each

(ln⊙(Pk) − 2πiNk) ∈ Herm(Cn), 2πi(Nk)ii = ln(1) for every i and such that for all y ∈ Cn,
⟨u, y⟩ = 0 (we are using an alternate characterization of Theorem 3.1; see Lemma 3.1, Statement
V)

y†(ln⊙(Pk) − 2πiNk)y ≥ 0.

Further, we can assume that for all i, j:

(Nk)ij ∈ Z ∩ [
β

2π
−

1

π
∣ ln(δk)∣ − 1,

β

2π
+

1

π
∣ ln(δk)∣ + 2)

where δk ∶= mini,j ∣(Pk)ij ∣, and the branch of the function ln is chosen such that it is continuous
at Pij for every i, j ∈ [n]. Before we proceed further, we show that for sufficiently large k we
can restrict the choice of matrices, Nk to a finite set.

Claim: For the sequence, {Pk}∞k=1 and integer matrices {Nk}
∞
k=1 as described above, there exists

M ∈ N, such that for all k ≥M and for all i, j ∈ [n], we have

(Nk)ij ∈ Z ∩ [
β

2π
−

1

π
∣ ln(

δ

2
)∣ − 1,

β

2π
+

1

π
∣ ln(

δ

2
)∣ + 2) ,

where δ ∶= mini,j ∣Pij ∣. This essentially says that the range of elements of Nk can be made
independent of k.
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Proof of claim: Since, δ ≠ 0 and the elements (Pk)ij → Pij for every i, j ∈ [n], we can choose M
such that for all k ≥M and i, j ∈ [n]

∣ ∣(Pk)ij ∣ − ∣Pij ∣ ∣ <
δ

2

⇒ ∣Pij ∣ −
δ

2
< ∣(Pk)ij ∣

⇒ δ −
δ

2
< ∣(Pk)ij ∣

⇒
δ

2
< ∣(Pk)ij ∣.

Since, this is true for all i, j ∈ [n], for every k ≥M we have

δ

2
< min

i,j
∣(Pk)ij ∣ = δk.

Using the fact that ∣ ln(x)∣ is decreasing for x ∈ (0,1], we see that

[
β

2π
−

1

π
∣ ln(δk)∣ − 1,

β

2π
+

1

π
∣ ln(δk)∣ + 2)

is a subset of

[
β

2π
−

1

π
∣ ln(

δ

2
)∣ − 1,

β

2π
+

1

π
∣ ln(

δ

2
)∣ + 2) .

This proves the claim for M as chosen above. ∎

Now, we only consider the infinite sequence of matrices, {Pk ∶ k ≥M}, where M is the number
as defined in the claim above. Observe that the integer matrix corresponding to each of these
matrices, Nk, is chosen from the finite set of matrices,

F ∶={N ∈ Zn×n∣ for all i, j ∈ [n] ∶

β

2π
−

1

π
∣ ln(

δ

2
)∣ − 1 ≤ Nij <

β

2π
+

1

π
∣ ln(

δ

2
)∣ + 2}.

We can write

F = {K1,K2, ⋯ ,Kl}

for some l ∈ N to emphasize the fact that its finite. Since, this set is finite and the sequence (Nk)k
is infinite, there exists a p ∈ [l] such that Nk = Kp for infinitely many k. Define K ∶= Kp for
convenience. We choose a subsequence of {Pk ∶ k ≥ M}, {Pkt}

∞
t=1 such that Nkt = K for all

t ≥ 1. Also, as this is a subsequence of {Pk}k, Pkt → P . Now, observe that for every y ∈ Cn such
that ⟨u, y⟩ = 0 and for all t ≥ 1,

y†(ln⊙(Pkt) − 2πiK)y ≥ 0.
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This implies that for such a vector, y,

lim
t→∞

y†(ln⊙(Pkt) − 2πiK)y ≥ 0

⇒ y†(ln⊙(lim
t→∞

(Pkt)) − 2πiK)y ≥ 0

⇒ y†(ln⊙(P ) − 2πiK)y ≥ 0,

where we have used the fact that K is a constant and the functions– fy(X) = y†Xy, and
f(X) = ln⊙X are continuous. The ln⊙X function is continuous because we chose the branch of
the ln function such that no element of P lay on the branch cut. Further, 2πi(K)ii = ln(1) for ev-
ery i, since K = Nk for some k, and ln⊙(P )− 2πiK = limt→∞(ln⊙(Pkt)− 2πiK) ∈ Herm(Cn),
because the set of Hermitian matrices is closed. Using an equivalent characterization of Theorem
3.1, this proves our claim.

We need one final notion to characterize G(C n
n ). Observe that if

G(v1,⋯, vn) ∈ G(C n
n ), then

G(vπ−1(1),⋯, vπ−1(n)) = PπG(v1,⋯, vn)P
†
π ∈ G(C n

n ), (3.25)

for any permutation π (where Pπ represents the permutation matrix associated with π). If one
can construct a Gram matrix, Q using coherent states, then all one needs to do to construct the
Gram matrix, PπQP †

π is to permute the order of the coherent states forming Q by π. Therefore,
Q ∈ G(C n

n ) is equivalent to PπQP †
π ∈ G(C n

n ). In fact, because of the isometric invariance [16]
of the 2-norm, Q ∈ G(C n

n ) is equivalent to PπQP †
π ∈ G(C n

n ). We can use this fact to simplify
our analysis of matrices in G(C n

n ). In the rest of the chapter, we will refer to a Gram matrix of
the form, Q′ = G(vπ−1(1), vπ−1(2),⋯, vπ−1(n)) as a rearrangement of the vectors forming the Gram
matrix, Q = G(v1, v2,⋯, vn).

Theorem 3.2. A matrix, P ∈ L(Cn), is a member of G(C n
n ) if and only if P can be written as

PπPP
†
π =

m

⊕
i=1

Pi =

⎛
⎜
⎜
⎜
⎝

P1

P2

⋱

Pm

⎞
⎟
⎟
⎟
⎠

(3.26)

where, ⊕m
i=1Pi represents a direct sum of matrices, {Pi}mi=1 and for each i ∈ [m], Pi ∈ G(C ni

ni )

for some ni ∈ N, and Pπ is a permutation matrix.

In other words, P ∈ G(C n
n ) if and only if up to a rearrangement of the vectors forming it, P can

be written as a block-diagonal matrix where each block is a Gram matrix that can be realized by
multi-mode coherent states.

Proof. We will first prove that if P ∈ G(C n
n ), then it has the aforementioned block diagonal form.

This will be done in two steps. In the first step, we will establish two properties of elements of
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such a matrix, P . In the second step, which primarily relies on linear algebra, we will show that
these two properties suffice to prove that the matrix, P , has the required block diagonal structure.

Step 1: For a P ∈ G(C n
n ), and indices i, k ∈ [n] such that Pik ≠ 0 we will prove that, if j ∈ [n]

such that Pij = 0, then Pkj = 0 and if j ∈ [n] such that Pij ≠ 0, then Pkj ≠ 0. The idea is that if
two multi-mode coherent states have a non-zero inner product then their amplitude vectors have
to be a finite distance away from each other, but if their inner product approaches zero then the
distance between these vectors has to grow infinitely large.

We will first show that if Pik ≠ 0 and j ∈ [n] such that Pij = 0, then Pkj = Pjk = 0. To prove this
pick a sequence, {Pu}∞u=1 ⊆ G(C n

n ) such that,

lim
u→∞

Pu = P.

Here, we once again consider the 2-norm without any loss of generality. Observe that this is
equivalent to

lim
u→∞

(Pu)ab = Pab

for all a, b ∈ [n]. Since, Pu ∈ G(C n
n ), there exist multi-mode coherent states,

{eiφui∥αui ⟫}
n

i=1 ⊆ Cn, such that (Pu)ab = ⟨eiφua∥αua⟫, e
iφub∥αub⟫⟩ for all a, b ∈ [n]. Using Lemma

3.3, we have,

(−2 ln ∣ (Pu)jk ∣)
1/2

= ∥αuk − α
u
j ∥2

≥ (−2 ln ∣ (Pu)ij ∣)
1/2

− (−2 ln ∣ (Pu)ik ∣)
1/2
.

Taking the limit, u→∞, we have

lim
u→∞

(−2 ln ∣ (Pu)jk ∣)
1/2

≥ (−2 ln lim
u→∞

∣ (Pu)ij ∣)
1/2

− (−2 ln lim
u→∞

∣ (Pu)ik ∣)
1/2

≥ (−2 ln lim
u→∞

∣ (Pu)ij ∣)
1/2

− (−2 ln ∣Pik∣)
1/2
,

where we have used the continuity of ∣ ⋅ ∣, ln(⋅), and (⋅)1/2 functions. The limit on the RHS tends
to ∞ since limu→∞ ∣ (Pu)ij ∣ = ∣Pij ∣ = 0 and Pik ≠ 0, therefore

(−2 ln lim
u→∞

∣ (Pu)jk ∣)
1/2

=∞

⇒ lim
u→∞

∣ (Pu)jk ∣ = ∣Pjk∣ = 0.
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Hence, for Pik ≠ 0, and for every j ∈ [n] such that Pij = 0,

Pkj = Pjk = 0. (3.27)

since, P is Hermitian.

Now, we will prove that given Pik ≠ 0, if for j ∈ [n] Pij ≠ 0, then Pkj ≠ 0. For j such that Pij ≠ 0,
using the upper bound given in Lemma 3.3, we have

(−2 ln ∣ (Pu)jk ∣)
1/2

= ∥αuk − α
u
j ∥2

≤ (−2 ln (∣(Pu)ki∣))
1/2

+ (−2 ln (∣(Pu)ij ∣))
1/2
.

Taking the limit, u→∞, we have

lim
u→∞

(−2 ln ∣ (Pu)jk ∣)
1/2

≤ lim
u→∞

(−2 ln (∣(Pu)ki∣))
1/2

+ lim
u→∞

(−2 ln (∣(Pu)ij ∣))
1/2

≤ (−2 ln ∣Pki∣)
1/2

+ (−2 ln ∣Pij ∣)
1/2

=∶M <∞

where we have defined M to be the upper bound. This gives us

∣Pjk∣ ≥ exp(−
1

2
M2) > 0.

Therefore, for Pik ≠ 0 and j ∈ [n] such that Pij ≠ 0, we have

Pjk = P
∗
kj ≠ 0. (3.28)

Therefore, we have proven that for any n ∈ N, a matrix, P ∈ G(C n
n ), and i, j, and k ∈ [n] Eq.

3.27 and Eq. 3.28 hold. These two properties are sufficient to establish the block diagonal
structure of P .

Step 2: We will use induction on the size of the Gram matrices to prove the statement that
if P ∈ G(C n

n ), then P has the block diagonal form given in Eq. 3.26, up to a rearrangement of
the vectors forming it. First observe that since the sets, {X ∈ L(Cn) ∶Xii = 1 for all i ∈ [n]} and
Pos(Cn) are closed, P will belong in these sets. The induction hypothesis is clearly true for n = 1
as P = (1) is the only Gram matrix in this case and P = G(∥0⟫). We assume that our hypothesis
is true for all p ≤ n. For P ∈ G(C n+1

n+1 ), P can always be put into the form

P = (
P ′ x
x† 1

)
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where x ∈ Cn. It can be shown that P ′ ∈ G(C n
n ). Since, P is positive semidefinite, we can

write P = G(v1, v2,⋯, vn+1) for vectors, {vi}n+1
i=1 . Then, P ′ = G(v1, v2,⋯, vn). By the induction

hypothesis, there exists a permutation, π such that

PπP
′P †
π = G(vπ−1(1),⋯, vπ−1(n)) =

⎛
⎜
⎜
⎜
⎝

P ′
1

P ′
2

⋱

P ′
m

⎞
⎟
⎟
⎟
⎠

(3.29)

where for every i ∈ [m], P ′
i ∈ G(C ni

ni ) for some ni. We can transform P as

P Ð→ (
Pπ 0
0 1

)P (
P †
π 0

0 1
)

and prove our claim for this matrix without loss of generality. So, from now on we will assume
that P is block diagonal in the first n × n entries.

If for every i ∈ [n], P(n+1)i = 0, then our matrix is already in the required block diagonal
form. So, we will assume that there exists i ∈ [n] such that P(n+1)i ≠ 0. Observe that the block
structure of the first n × n entries divides the vectors forming the Gram matrix into orthogonal
subspaces. So, we may associate a subspace with each Gram matrix, P ′

l (Eq. 3.29). Further
assume without loss of generality that the vector, vi (where P = G(v1, v2,⋯, vn+1)) is in the
subspace associated with the Gram matrix, P ′

m (if not one can always permute the vectors
forming P such that this is true). Then using the fact that for all j such that Pij = 0, P(n+1)j = 0
(Eq. 3.27), one can see that P also has a block diagonal form if one includes the (n + 1)th row
and column in P ′

m (See Fig. 3.1 for a schematic representation of this fact). We will call this
new last block Pm. All the other blocks remain the same.

Furthermore, for every l ∈ [m − 1], P ′
l ∈ G(C nl

nl ), and if we prove that the new block, Pm
belongs in G(C nm+1

nm+1 ) then we would be done. Observe that P ′
m ∈ G(C nm

nm ), which means
that (P ′

m)uv ≠ 0 for all u, v ∈ [nm]. In addition, using Eq. 3.28, we can show that for all
u, v ∈ [nm + 1], (Pm)uv ≠ 0. Moreover, Pm ∈ G(C nm+1

nm+1 ). Using Lemma 3.4, these two imply
that Pm ∈ G(C nm+1

nm+1 ). Therefore, if P ∈ G(C n
n ), then P has the block diagonal form given in Eq.

3.26, up to a rearrangement of the vectors forming it.

We will prove the converse of the statement by construction. We will present a construction
for Gram matrices with 2 blocks, which can be generalised to m blocks easily. Suppose, we have
P1 ∈ G(C n1

n1 ) and P2 ∈ G(C n2
n2 ), then we wish to prove that

P = (
P1

P2
) ∈ G(C n

n )
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Figure 3.1: In this figure, we schematically represent the matrix, P ∈ G(C n+1
n+1 ), which is diagonal

in its first n × n entries. We consider the case where P(n+1)i ≠ 0. The facts proved in Step 1 of
the proof show that the zero (white) and non-zero (gray) terms in the ith-row (column) coincide
with zero and non-zero terms respectively in the (n + 1)th-row (column).

for n = n1 + n2.
For i = 1,2 let the multi-mode coherent states, {eiφij∥αij⟫}

ni

j=1
be such that

(Pi)uv = ⟨eiφiu∥αiu⟫, e
iφiv∥αiv⟫⟩ .

There are at least two ways in which this can be accomplished. One way would be to put both
the sets of amplitude vectors into the same space, say X = Cn′ for n′ = max{n1, n2}, and to
displace one of the sets by a large amplitude vector, A ∈ X . This way the inner products of the
coherent states belonging to the same set of states remains invariant for appropriately defined
phases, but the inner product of the coherent states belonging to different sets would tend to zero
as the norm of the vector, A, tends to ∞. The second way, which we present here, is similar
but it puts the amplitude vectors in different subspaces, and makes the distance between these
subspaces go to ∞.

We will define multi-mode coherent states {eiΦj∥βj(A)⟫}
n

j=1 dependent on a parameter, A ∈

R, such that their Gram matrix will approach P as A→∞. Define,

n ∶= n1 + n2

and,

{βj(A)}
n
j=1 ⊂ (Cn1 ⊕Cn2)⊕ (C⊕C)

{Φj}
n
j=1 ⊂ R
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such that for each j ∈ [n],

βj(A) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

α1
j ⊕ 0⊕A⊕ 0 j ≤ n1

0⊕ α2
j′ ⊕ 0⊕A j′ = j − n1 > 0

Φj ∶=

⎧⎪⎪
⎨
⎪⎪⎩

φ1j j ≤ n1

φ2j′ j′ = j − n1 > 0

Given these, one can check that the following hold for u, v ∈ [n1]

∥βu(A) − βv(A)∥2
2 = ∥α1

u − α
1
v∥

2
2

Im{⟨βu(A), βv(A)⟩} = Im{⟨α1
u, α

1
v⟩}

Φu −Φv = φ1u − φ1v,

whic imply that,

⟨eiΦu∥βu(A)⟫, eiΦv∥βv(A)⟫⟩ = ⟨eiφ1u∥α1
u⟫, e

iφ1v∥α1
v⟫⟩.

Similar relations hold for the case when u, v > n1, although one needs to replace uwith u′ = u−n1

and v with v′ = v − n1 on the RHS of these equations. For u ≤ n1 and v > n1, we have

∥βu(A) − βv(A)∥2
2 = ∥α1

u∥
2
2 + ∥α2

v′∥
2
2 + 2A2 ≥ 2A2

⇒ ∣⟨eiΦu∥βu(A)⟫, eiΦv∥βv(A)⟫⟩∣ ≤ exp(−A2). (3.30)

The matrix, P (A) = G(eiΦ1∥β1(A)⟫,⋯, eiΦn∥βn(A)⟫) is a member of G (C n
n+2) and also of

G (C n
n ) (by Corollary 3.1) for every A ∈ R. For this family of matrices, we have that

lim
A→∞

P (A) = (
P1

P2
) ∈ G (C n

n ).

This together with the observation that P ∈ G(C n
n )⇔ PπPP

†
π ∈ G(C n

n ) for a permutation ma-
trix, Pπ, completes our proof.

We have proven here that an n × n Gram matrix can be approximated arbitrarily well using
Gram matrices of multi-mode coherent states if and only it can be put into the form of Eq. 3.26.
Moreover, we have also shown that if this is the case then we can approximate it using at most
n−mode coherent states. During the proof of the converse of the theorem, we also suggest
a way to construct such matrices, which would potentially require only maxi{ni} number of
modes (here ni are the dimensions of the block diagonal matrices in Eq. 3.26). Secondly, one
may wish to understand the energy requirements for approximating a Gram matrix up to an
error, ε, using coherent states. In the proof for the converse presented here, the overlap between
the states of two blocks decreases exponentially fast in the number of additional photons (Eq.
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3.30). Therefore, we would only require O(log(1/ε)) additional photons to approximate a block
diagonal Gram matrix.

We use this characterization of the closure of G(C n
n ) to show that one cannot arbitrarily

approximate Gram matrices of mutually unbiased bases using multi-mode coherent states. Recall
that two orthonormal sets of vectors, {∣ei⟩}ni=1 and {∣fi⟩}ni=1 are said to be mutally unbiased [41]
if for every i, j ∈ [n]

∣⟨∣ei⟩ , ∣fj⟩⟩∣
2 =

1

n
. (3.31)

In standard literature, these sets are bases of Cn. However, we relax this condition here and
consider these to be sets of vectors in the infinite dimensional Fock space.

Example 3.2. Gram matrices of mutually unbiased bases cannot be arbitrarily approximated
using multi-mode coherent states
Consider two mutually unbiased sets of vectors, E = {∣ei⟩}ni=1 and F = {∣fi⟩}ni=1 in the Fock
space. E and F are orthonormal sets satisfying Eq. 3.31. For these vectors, define
P ∶= G(∣e1⟩ , ∣e2⟩ , ⋯ , ∣en⟩ , ∣f1⟩ , ∣f2⟩ , ⋯ , ∣fn⟩). Suppose, P ∈ G(C 2n

2n ), then using the fact that
Pki ≠ 0 and Pji ≠ 0 implies Pkj ≠ 0 for such matrices (equivalent to Eq. 3.28 in Theorem 3.2),
we have that since P1(n+1) = ⟨∣e1⟩ , ∣f1⟩⟩ ≠ 0 and P2(n+1) = ⟨∣e2⟩ , ∣f1⟩⟩ ≠ 0, P12 = ⟨∣e1⟩ , ∣e2⟩⟩ ≠ 0,
which is a contradiction. Hence, P ∉ G(C 2n

2n ).

3.4 Conclusion

In this chapter, we successfully characterized the set of Gram matrices of multi-mode coherent
states and its closure. We provided tests to check if a Gram matrix belongs to either of these
sets. We proved that no more than (n − 1)-modes are required to represent a Gram matrix of
n-vectors. These results will hopefully serve as a toolbox for formulating quantum protocols in
terms of coherent states, and facilitate their experimental implementation. They also add to our
theoretical knowledge of coherent states, and completely describe sets of states attainable from
them. We also expect our results to be beneficial towards understanding the kind of quantum
resources a communication protocol requires.
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Chapter 4

Optical quantum fingerprinting

4.1 Introduction

Quantum communication allows for exponential savings as compared to classical communica-
tion. This fact was demonstrated by Buhrman et al. [7] who gave a protocol requiring only
O(logn) quantum communication for the Equality problem in the simultaneous message pass-
ing (SMP) model. This is exponentially smaller than the communication lower bound of Ω(

√
n)

for classical protocols solving the problem in the same model. Their protocol is referred to as the
quantum fingerprinting protocol. Furthermore, this protocol is not merely a theoretical curiousity.
It has been demonstrated experimentally in regimes where it requires lesser communication than
any possible classical protocol. These experimental realizations were made possible by the re-
formulation of the protocol in terms of coherent states and linear optics.

This chapter will mainly deal with optical protocols in the simultaneous message passing
(SMP) setting. We refer the reader to Section 2.6 for a description of this setting and the known
results. This chapter consists of two parts. In the first part, we discuss our collaboration with
experimentalists to demonstrate a quantum advantage in terms of information loss during the
protocol. This is a much more difficult task compared to what has been previously done. The
challenges encountered in the implementation of this experiment motivated us to look at the
growth of resources in general protocols to solve the Equality problem. In the second part of the
chapter, we study the tradeoff between the two resources expended during optically implemented
SMP communication protocols: the duration of the protocol and the energy required to run it. We
derive general bounds on the growth of these quantities which are valid for all optical protocols.
Then, we develop tighter bounds for the growth of these resources for protocols implementing
quantum fingerprinting with coherent states.
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4.2 Experimental quantum fingerprinting

In this section, we describe our work with an experimental collaboration to implement the quan-
tum fingerprinting protocol. The goal of the experiment is to beat the classical information
leakage bound for the Equality problem. We helped the group to determine the correct parameter
range for the experiment, as well as to figure out the optimal way to conduct the experiment.
We describe the results used for this purpose, and the challenges faced during the experiment.
This will lead us into a theoretical analysis of the growth of the resources required to conduct the
experiment, which we shall cover in the next section.

4.2.1 Coherent state quantum fingerprinting protocol

We first recall the coherent state quantum fingerprinting (QFP) protocol given by Arrazola et
al. in Ref. [12]. Let E ∶ {0,1}n → {0,1}m be a classical error correcting code (ECC), such
that for strings x ≠ y, h(E(x),E(y)) ≥ δm (where h is the Hamming distance) for some δ > 0
and m = O(n). That is, the error correcting code guarantees us that the encodings for two
different strings will differ for at least δ fraction of the strings. For a string x ∈ {0,1}n, define
the amplitude vector αx ∈ Cm as

(αx)i ∶= (−1)E(x)i
√

µ

m
(4.1)

for every i ∈ [m]. The quantum fingerprinting protocol requires Alice and Bob to map their
strings x and y to quantum states ∣ψx⟩ and ∣ψy⟩ such that whenever x ≠ y, ∣ ⟨ψx∣ψy⟩ ∣ < γ for
some γ < 1. These amplitude vectors have been chosen such that the states {∥αx⟫}x∈{0,1}n satisfy
this criterion. For x ≠ y, we have ∣⟨∥αx⟫, ∥αy⟫⟩∣ ≤ e−2µδ < 1. Now, we describe the quantum
fingerprinting protocol which is based on these states.

Coherent state quantum fingerprinting protocol [12]:

1. Suppose Alice’s input is x and Bob’s input is y. Then, they prepare the states ∥αx⟫
and ∥αy⟫ for the amplitudes defined above in Eq. 4.1 and send them to the Referee.

2. The Referee performs an interference measurement on the two states he receives: the
optical states are passed through a balanced beam splitter and the number of photons
at the dark port is measured using a CCD detector [1].

3. If the number of photons measured is greater than a certain predetermined threshold
µth the Referee concludes that the strings were different.

[1]The protocol given in Ref. [12] uses single photon detectors instead of CCD detectors
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If the states received by the Referee in the above protocol are the same, then ideally he should
not observe any photons in the dark port. However, due to experimental imperfections a certain
threshold µth is set depending on the experimental parameters. The aforementioned description
of the states {∥αx⟫}x using Eq. 4.1 is only a particular example of possible fingerprinting states
for the strings. If a quantum fingerprinting protocol uses coherent states as fingerprinting states,
then we refer to it as a coherent state QFP protocol, while we refer to the above protocol as the
coherent state QFP protocol.

4.2.2 Experimental QFP to beat the classical information leakage bound

The aim of our experiment is to implement the coherent state quantum fingerprinting protocol
given in Ref. [12], and to beat the classical information leakage bound for the equality prob-
lem [34]. This protocol has been previously implemented in two different experiments [3, 11].
The experiment by Xu et al. [11] demonstrated that the coherent state QFP protocol required
lesser communication than the best known classical protocol. Guan et al. [3] went a step further
and showed that this protocol requires lesser communication than any possible classical protocol.
Both these experiments focus on the communication complexity of the problem. They use the
communication cost or the number of qubits required to perform the protocols as a measure of
communication. For protocols, which use states in infinite dimensional Hilbert spaces like coher-
ent states, the equivalent number of qubits, which would be required to approximate these states
(using a tool like Theorem 4.2) are used to determine the communication cost of the protocols.
In our experiment, we look at the information complexity of the problem instead. In Ref. [42],
a measure of information transmission based on quantum Shannon theory called quantum in-
formation leakage was provided for this problem and it was theoretically shown the quantum
protocol required exponentially lesser communication than the classical protocols. The aim of
our experiment is to show that the coherent state QFP protocol can be used to provably beat the
information leakage bound for classical protocol. As it turns out, it is much more difficult to do
so. Our analysis reveals that the experiment has to be conducted for string lengths, which are
almost two orders of magnitude larger than what the previous experiments did.

In the following subsection, we present the relevant definitions of quantum and classical
information leakage in the SMP model. We also give the bounds for information leakage in the
classical and the quantum settings. In the second subsection, we discuss the experiment and the
techniques used to estimate the experimental parameters.

4.2.2.1 Information leakage for the equality problem

We begin by first defining the classical information leakage of a protocol in the SMP model.
Intuitively, the information leakage of the protocol is the information leaked to the Referee by
Alice and Bob about their inputs. This notion is formalised by considering the mutual informa-
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tion between Alice and Bob’s messages, and their inputs.

Consider the protocol Π to compute the function f in the SMP model with error ε. Let the
random variable X represent Alice’s input, and Y represent Bob’s input. Let RR represent the
private randomness of the Referee. Finally, suppose that MA and MB are the random variables
representing messages sent by Alice and Bob to the Referee during the protocol Π. We then
define the information leakage of the protocol as follows.

Definition 4.1 ( [34]). The information leakage of the protocol Π on the input distribution p ∈
P (X × Y ) is defined to be

IL(Π, p) ∶= I(XY ∶MAMBRR)

and the information leakage of the protocol Π is defined as

IL(Π) ∶= max
p∈P (X×Y )

IL(Π, p).

The information leakage for computing f with error ε is defined as

IL(f, ε) ∶= inf
Π

{IL(Π)}

where the infimum is over SMP protocols which compute f with error ε.

From early work [43] in the field of classical communication complexity, it is known that
the information leakage of the Equality problem is at least Ω(

√
n). Since, the quantum finger-

printing protocol given by Buhrman et al. uses only O(logn) qubits, the information leakage of
such protocols is also bounded above by O(logn) (for coherent state protocol this is formally
presented below). However, the classical lower bound proven in [43] is very weak, and it would
be difficult to violate it experimentally. For this reason, Arrazola and Touchette proved a stronger
lower bound in their paper [34], and it is this bound which we use in our experiment to determine
the required string length. We state this bound as Theorem 4.1.

Theorem 4.1 ( [34]). For every n ∈ N, ε > 0, δ1 > 0 and δ2 > 0 satisfying ε + δ1 + δ2 < 0.5, we
have the following lower bound

IL(Eqn, ε) ≥ δ1(2
√
g3(ε + δ1 + δ2)n − g3(ε + δ1 + δ2) − g2(n,n, δ2) − 10) − g1(2n) (4.2)

with g1(x) = 2 log(x+1)+10, g2(x, y, z) = 2 log( 2(x+y)
z2 log(e) +1)+2 and g3(x) = 2 log(e)(0.5−x)2.

Following the definition of information leakage for protocols in the classical SMP setting, we
can define the quantum information leakage of a protocol in the quantum SMP setting. Suppose
during a SMP protocol Π, Alice sends the quantum state σAx to the Referee on input x and Bob
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sends the state ηBy on input y. Further, suppose that p is the joint distribution over the inputs. In
this case, the joint state of Alice, Bob and the Referee during the protocol is

ρXY AB ∶=∑
x,y

p(x, y) ∣x⟩ ⟨x∣
X
⊗ ∣y⟩ ⟨y∣

Y
⊗ σAx ⊗ η

B
y . (4.3)

For this protocol, we define the quantum information leakage as follows.

Definition 4.2 ( [42]). Given a quantum SMP protocol as described above, we define the quantum
information leakage as

QIL(Π) = max
p∈P (X×Y )

I(XY ∶ AB)ρ (4.4)

where ρ is the state described in Eq. 4.3.

In Ref. [12], Arrazola and Lütkenhaus show that one can arbitrarily approximate the coherent
states {∥αx⟫}x with constant mean photon number by quantum states living in a O(log(n))
dimension Hilbert space. Their argument can be also extended to include coherent states with
mean photon number below a certain value. This would be helpful later on. We state their result
with this modification as Theorem 4.2.

Theorem 4.2 ( [12]). Let {∥αx⟫}x∈{0,1}n be a set of m-mode coherent states such that for every
x, ∥αx∥2

2 ≤ µ. Then, for every ε > 0, there exist a collection of states {∣Ψx⟩}x∈{0,1}n ⊂ Hd where
log(dim(Hd)) = O(µ log(m)) such that

∥∥αx⟫⟪αx∥ − ∣Ψx⟩ ⟨Ψx∣ ∥1 ≤ ε

for every x ∈ {0,1}n. In particular, if m = O(n), then log(dim(Hd)) = O(µ log(n)).

Proof. We provide a proof of this theorem in the Appendix A.2.

This result can be used to prove an upper bound of O(logn) on the quantum information
leakage of the coherent state QFP protocol. Suppose in such a protocol, Alice and Bob map their
strings to the multimode coherent states {∥αx⟫}x with constant mean photon number µ. Then, for
ε > 0, we can choose a Hilbert space Hd which contains states approximating {∥αx⟫}x as above.
By using a continuity bound for entropy (the Fannes-Audenaert inequality), the following upper
bound for the quantum information leakage of such protocols was proven in Ref. [42]

QIL(Π
(n)
CS-QFP) ≤ log(dim(Hd)) + 2n

√
2ε +H2(

√
2ε) (4.5)

where we use Π
(n)
CS-QFP to denote any family of coherent state fingerprinting protocols with con-

stant mean photon number, and H2(x) = −x log(x) − (1 − x) log(1 − x) is the binary entropy
function. Strictly speaking, this bound does not show that the information leakage is bounded by
O(logn), since the right hand side grows linearly in n. However, this bound is numerically easy
to use. Further, since ε is arbitrary one can optimize over ε. This makes the growth of the bound
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Figure 4.1: We plot the information leakage lower bound for classical protocols and the upper
bound on the information leakage for the coherent state quantum fingerprinting protocol. We
also plot the communication lower bound for classical protocols which was beaten by [3]. It can
be seen that the information leakage lower bound is much smaller than the communication lower
bound. The information leakage in the coherent state QFP protocol is seen to be lower than the
lower bound on the information leakage of any classical protocol for n ≳ 1011. It is possible that
for smaller input sizes than this value there exist classical protocols with information leakage
lower than this specific QFP protocol.

close to logarithmic numerically. Nevertheless, for the sake of completeness we point the reader
to Ref. [42] which proves that the information leakage is actually bounded above by O(logn).

The bound in Eq. 4.5 allows us to calculate the quantum information leakage using the
experimental parameters. Eqns. 4.2 and 4.5 are used to numerically calculate the string length at
which the experiment should run to beat the classical information leakage bound. From Fig. 4.1,
it can be seen that we need to go to string lengths of the order of 1011 to accomplish this task.

4.2.2.2 Estimation of experimental parameters

Our experiment follows almost the same protocol as the one given in Ref. [12], except for the
fact that we use CCD detectors instead of single photon detectors. In Ref. [12], Arrazola and
Lütkenhaus analyze the protocol for the case where the Referee makes an intereference measure-
ment using a beam splitter and a single photon detector. In our experiment, the Referee makes
an interference measurment by using a beam splitter and a CCD detector, which counts the to-
tal number of photons in each run of the protocol unlike the single photon detector which only
measures the presence or absence of photons for each mode and gives a count of these. The pro-
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tocol in Ref. [12] does not require the time resolution of single photon counting. Hence, bucket
detectors like CCD detectors are sufficient to conduct the protocol. We chose CCD detectors for
the experiment because they do not suffer from dark counts like single photon detectors. It is
seen that dark count probability significantly deteriorates the performance of the experiment and
increases the time required to conduct the experiment [11]. Dark counts affect the probability
of whether a click is measured or not in each mode (number of modes m ∼ 1011). Whereas, the
noise in CCD detectors can be modelled as a constant readout noise independent of the number
of temporal modes. This leads to a higher error probability in the protocol if one uses single
photon detectors instead of CCD detectors.

Recall that in the coherent state QFP protocol, Alice and Bob map their strings x and y to
coherent states ∥αx⟫ and ∥αy⟫, where the amplitudes are given by Eq. 4.1. A subclass of random
linear codes with Toeplitz generator matrices was used as the error correcting code following
Ref. [11]. These codes are effcient to compute and have a high rate (approach the Gilbert-
Varshamov rate bound asymptotically). These codes could be used to set the fraction of differ-
ences between different codewords δ to be anything in (0,1/2). The Referee passes the optical
states he receives through a beam splitter and measures the dark port using a CCD detector. A
balanced beam splitter transforms coherent states as ∣α⟩ ∣β⟩Ð→ ∣(α + β)/

√
2⟩L ∣(α − β)/

√
2⟩D,

where L represents the light mode and D the dark mode.

In order to theoretically model the system and comment on its performance we also need to
take experimental imperfections into account. Non-unity transmission efficiency ηT and quantum
efficiency of the CCD camera ηQ have the effect of scaling the amplitude of the coherent state
incident on the CCD detector. A non-unity visibility ν of the beam splitters leads to a mixing of
the light and dark modes. Finally, we model the noise in the CCD detector as a constant readout
noise r. If we consider these imperfections, then we are guaranteed that the CCD detector at the
dark port sees a multimode coherent state with an average number of photons greater than

µneq = 2µηTηQ ((1 − ν)(1 − δ) + δν) + r

for unequal strings. On the other hand, for equal strings the dark port sees a multimode coherent
state with an average number of photons equal to

µeq = 2µηTηQ (1 − ν) + r.

Thus, the Referee’s task reduces to discriminating between two Poisson distributions with mean
values µeq and µneq. The error of discriminating these distributions is also the error of the proto-
col. Ref. [12] demonstrates a theoretical method for bounding this error. In our work, however,
we calculate the error numerically.

Using these relations, we helped the experimental team figure out the acceptable range of ex-
perimental parameters like the various efficiencies and the visibility of the interferometer. Once
these parameters were decided, we optimized the protocol parameters like δ and the protocol
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error for the experiment.

It is seen that in order to beat the classical information leakage bound, we need to go up to
string lengths of 1011, which when encoded with the ECC are about 4 × 1011 bits long. Hence,
at a transmission rate of about 2 GHz the experiment takes 200 seconds. It is extremely difficult
to ensure the stability of the experiment for such long durations. Therefore, in the next section
we study if the time required for the QFP experiment can be reduced. The time required by our
experiment depends on the number of modes in the signals sent by Alice and Bob. We study the
dependence of the number of modes on the problem size for general optical protocols. We also
examine if the growth of the number of modes can be traded off with the energy required during
the protocol (mean photon number of the signals).

4.3 Tradeoff between resources for optical quantum finger-
printing

In this section, we will study the tradeoff between the number of modes and the mean number
of photons required to run an optical quantum SMP protocol to compute the Equality function.
Both of these are resources we invest while computing any function optically. The time required
for Alice and Bob to run the protocol depends on the number of temporal modes in the signals
they have to send to the Referee. Whereas, the mean photon number of the signals is directly
proportional to the energy required to run the protocol. Therefore, we are essentially studying
the tradeoff relation between the time required to run the protocol and the energy required during
the protocol.

First, in Subsection 4.3.2, we study this problem in a general context. We develop a general
bound on the growth of the number of modes and the mean number of photons with respect to
the problem length for any optical protocol computing a function f . Then, in Subsection 4.3.3,
we develop similar bounds for coherent state QFP protocols. We show that the number of modes
increases almost linearly with the problem size for such protocols and hence the time required
for Arrazola and Lütkenhaus’ QFP protocol is optimal upto a constant factor.

4.3.1 Intermediate results

We begin by proving some intermediate results. These would be helpful for proving general
tradeoff bounds in Section 4.3.2.

Lemma 4.1 (Winter’s gentle measurement lemma [16, Corollary 3.15]). Let H be a Hilbert
space, ρ ∈ D(H) be a density operators and P ∈ Pos(H) a positive operator satisfying P ≤ 1
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and Tr(Pρ) > 0. Then, we have

F (ρ,

√
Pρ

√
P

Tr(Pρ)
) ≥

√
Tr(P, ρ).

Lemma 4.2. Let P be a projector and ρ ∈ D(H) be a density matrix in the Hilbert space H,
such that Tr(Pρ) ≥ 1 − δ for δ ∈ (0,1). Then, we have that

1

2
∥ρ −

PρP

Tr(PρP )
∥

1

≤
√

2δ (4.6)

Proof. As a result of Lemma 4.1, we have

F (ρ,
PρP

Tr(Pρ)
) ≥

√
Tr(P, ρ) ≥

√
1 − δ.

Using the Fuchs-van de Graaf inequality (Theorem 2.4), the trace distance

∥ρ −
PρP

Tr(PρP )
∥

1

≤ 2
√

1 − F (ρ, σ)2

≤ 2
√

1 − (1 − δ)2

= 2
√

2δ − δ2

≤ 2
√

2δ

Lemma 4.3. Suppose in a quantum simultaneous message passing (SMP) protocol to compute
the function f with error at most ε, Alice and Bob send the quantum states ρx and σy on inputs
x and y. If ρ′x and σ′y are quantum states such that 1/2∥ρx − ρ′x∥1 ≤ δ and 1/2∥σy − σ′y∥1 ≤ δ for
all x and y, then the states used in the actual protocol can be replaced by these to create a SMP
protocol with error at most ε + 2δ.

Proof. Suppose that on inputs x and y, Alice and Bob send the quantum state ρx and σy to the
referee, who applies Φref (quantum-classical CPTP map) to the joint state to compute f(x, y).
For such a protocol, we have that for every x, y

1

2
∥Φref(ρx ⊗ σy) − ∣f(x, y)⟩ ⟨f(x, y)∣ ∥1 ≤ ε,
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which is equivalent to saying that for inputs the error probability is less than ε. Now, if we replace
the states used by Alice and Bob by ρ′x and σ′y such that 1/2∥ρx − ρ′x∥1 ≤ δ and 1/2∥σy − σ′y∥1 ≤ δ
for all x and y, then we have that for every x and y

1

2
∥Φref(ρ

′
x ⊗ σ

′
y) − ∣f(x, y)⟩ ⟨f(x, y)∣ ∥1

≤
1

2
∥Φref(ρx ⊗ σy) − ∣f(x, y)⟩ ⟨f(x, y)∣ ∥1 +

1

2
∥Φref(ρx ⊗ σy) −Φref(ρ

′
x ⊗ σ

′
y)∥1

≤ ε +
1

2
∥Φref(ρx ⊗ σy) −Φref(ρ

′
x ⊗ σy)∥1 +

1

2
∥Φref(ρ

′
x ⊗ σy) −Φref(ρ

′
x ⊗ σ

′
y)∥1

≤ ε + 2δ

where we have used the fact that for all ρ ∈ D(H), ∥ρ∥1 = 1 and for all CPTP maps Φ, ∥Φ∥1 ≤ 1
(Theorem 2.2).

4.3.2 Tradeoff between the mean photon number and the number of modes
for optical SMP protocols

Now, we will study the tradeoff between the number of modes and the mean photon number
for a family of optical SMP protocols computing a function f ∶ {0,1}n × {0,1}n → {0,1}. Let
{Πn}

∞
n=1 be a family of SMP protocols, which computes the function f(x, y) with error at most

1/10. The exact value of error is not relevant, since the communication cost for fixed error rates
are equal up to multiplicative factors (Theorem 2.6). The protocol Πn can be used to compute the
function f(x, y) when x and y are n-bit strings. We suppose that these protocols are implemented
optically. That is, the states sent by Alice and Bob while running Πn are part of a m(n)-mode
Hilbert space H⊗m(n), where H is the single mode Fock space. Note that the states used depend
on the problem parameter n, and hence the number of modes m = m(n) too. We will call the
states sent by Alice and Bob on inputs x and y during protocol Πn, ρ(n)x and σ(n)y . Further, we
define the maximum mean number of photons µ(n), which Alice or Bob may have to send during
Πn as

µ(n) ∶= max{{Tr(N̂ρ
(n)
x ) ∶ x ∈ {0,1}n} ∪ {Tr(N̂σ

(n)
y ) ∶ y ∈ {0,1}n}} . (4.7)

For notational convenience, we will drop the explicit dependence of µ(n) and m(n) on n and
denote the number of modes and the maximum mean photon number by m and µ.

Our strategy will be to use the fact that the maximum mean photon number is µ to find a
projector P , which has high overlap with the states ρ(n)x and σ

(n)
y used in the protocol. The

rank or the dimension of this projector will be shown to depend only on m and µ. We will use
it to transform the given protocol into another protocol, where Alice and Bob send the finite
dimensional states Pρ(n)x P /Tr(Pρ

(n)
x ) and Pσ(n)y P /Tr(Pσ

(n)
y ) on inputs x and y. This protocol

would require the communication of only O(log(rank(P ))) qubits, which has to satisfy the
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known lower bounds for the SMP communication complexity of f .

Consider a fixed value of n. For any state ρ(n) ∈ {ρ
(n)
x ∶ x ∈ {0,1}n} ∪ {σ

(n)
y ∶ y ∈ {0,1}n}

sent by Alice or Bob during Πn, using the Markov inequality (Eq. 2.3) we have that

Prρ(n)[N ≥ µ/δ] ≤ δ
Eρ(n)[N]

µ
≤ δ

⇒ Prρ(n)[N < µ/δ] ≥ 1 − δ. (4.8)

Define, P ∶= ∑(n1,⋯,nm)∈S<µ/δ
∣n1,⋯, nm⟩ ⟨n1,⋯, nm∣ where S<µ/δ ∶= {(n1, n2,⋯, nm) ∶

∑
m
i=1 ni < µ/δ}. We can rewrite Eq. 4.8 as

Tr(Pρ(n)) ≥ 1 − δ. (4.9)

Now, using Lemma 4.2, we have that for every x, y

1

2

XXXXXXXXXXX

ρ
(n)
x −

Pρ
(n)
x P

Tr(Pρ
(n)
x P )

XXXXXXXXXXX1

≤
√

2δ

1

2

XXXXXXXXXXX

σ
(n)
y −

Pσ
(n)
y P

Tr(Pσ
(n)
y P )

XXXXXXXXXXX1

≤
√

2δ.

Using Lemma 4.3, we can create a SMP protocol for f with error at most 1/10 + 2
√

2δ, which
uses the states {Pρ

(n)
x P /Tr(Pρ

(n)
x ) ∶ x ∈ {0,1}n} ∪ {Pσ

(n)
y P /Tr(Pσ

(n)
y ) ∶ y ∈ {0,1}n}. This

protocol requires the communication of only O(log(rank(P ))) qubits. Further, the rank of the
projector P can be estimated as follows.

The rank of the projector is equal to ∣S<µ/δ ∣ which is equal to the number of non-negative
integer solutions of the equation

m

∑
i=1

ni <
µ

δ
.

If we introduce a slack variable s, this is equal to the number of non-negative integer solutions
of

m

∑
i=1

ni + s = ⌊
µ

δ
⌋

which is equal to

(
a +m

m
)
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where a = ⌊µ/δ⌋ using standard combinatorics. Further, using Lemma A.1, this expression can
be bounded by (1 +m)a and (1 + a)m. Thus, we have that

log(rank(P )) ≤ min{
µ

δ
log(1 +m),m log(1 +

µ

δ
)} (4.10)

We can choose δ = 10−4, so that the error of the protocol is smaller than 1/3. Then, we can
simply use the lower bounds corresponding to an error of 1/3. This does not affect the asymp-
totic bounds we are working towards as the asymptotic communication cost for communication
protocols does not depend on the error. Thus, moving forward we can ignore the dependence
of the upper bound on δ. Recall that the SMP communication cost for quantum protocols for
function f is lower bounded by Ω(log(R

∣∣

1/3
(f))), where R∣∣

1/3
(f) is the SMP communication

complexity for computing f with error at most 1/3 (Theorem 2.8). Further, the classical private
SMP communication complexity is lower bounded by Ω(

√
D(f)), where D(f) is the determin-

istic communication complexity of f (Theorem 2.7). Thus, the number of qubits q used by any
quantum protocol is lower bounded by Ω(log(D(f))). For any family of optical quantum SMP
protocols for f , the following bounds holds true

µ log(m) = Ω(log(D(f))) (4.11)
m log(µ) = Ω(log(D(f))). (4.12)

In particular, if the maximum mean number of photons for a family of quantum fingerprinting
protocol is constant, then we have that

log(m) = Ω(log(n))

These bounds show that in a weak sense the QFP protocol given by Arrazola and Lütkenhaus is
optimal. We use the phrase weak, because these bounds do not rule out the possibility of a family
of optical protocols with constant mean photon number and sublinear growth of m in n. In the
next section, we will show that these bounds can be made tighter for the implementations of the
quantum fingerprinting protocol given in Ref. [7] which use coherent states.

4.3.3 Tradeoff bounds for the QFP protocol implemented using coherent
states

In this section, we only consider the protocol for the Equality function given in Ref. [7] (referred
to as the Quantum Fingerprinting (QFP) protocol here on). While our earlier results were valid
for all possible optical protocols to solve the Equality problem in the SMP model, the results
in this section will focus only on implementations of the QFP protocol which use multimode
coherent states. Recall that in the QFP protocol, Alice and Bob both map their strings x and y
to pure states ∣ψx⟩ and ∣ψy⟩ which satisfy ∣ ⟨ψx∣ψy⟩ ∣ ≤ δ for some δ > 0. The referee then uses an
appropriate test to check if the states ∣ψx⟩ = ∣ψy⟩ or not. In the following, we specifically consider
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an implementation of this protocol where the states prepared by Alice and Bob are constrained
to be multimode coherent states, whereas the Referee is allowed to use any measurement to
solve the problem. Alice and Bob in this setting can be thought of as resource limited ’clients’
to an all powerful ’server’, the Referee.

Consider a family of QFP protocols {QFPn} which can be used to solve the Equality problem
in the SMP setting when x and y are n-bit strings. Suppose that the coherent state implementation
of this family of QFP protocols uses the multimode coherent states {∥α

(n)
x ⟫}x∈{0,1}n . We define

the number of modes m and maximum average photon number µ as in the previous section. We
also define the parameter δ(n) to be the maximum overlap between any two of these states,

δ(n) ∶= max
x≠y

{∣⟨∥α
(n)
x ⟫, ∥α

(n)
y ⟫⟩∣}. (4.13)

By the requirements of the protocol, we have that δ(n) < 1 for every n. We further note that
practically δ(n) ≤ 1− εexp for every n for some constant parameter εexp > 0, since experimentally
it would not be possible to distinguish or prepare states with fidelity arbitrarily close to unity[2].
One can also think of this restriction as a consequence of the experimental precision of prepa-
ration of the states. In our discussion moving forward, we once again drop the dependence of
the maximum overlap on n and simply refer to it as δ for the sake of clarity. Using Eq. 3.3, we
see that Eq. 4.13 further implies that the amplitude vectors, {α(n)x }x∈{0,1}n ⊂ Cm are such that for
every x ≠ y

∥α
(n)
x − α

(n)
y ∥2 ≥ δ

′ (4.14)

where we define δ′ ∶= (2 ln(1/δ))1/2 (note that δ′ too depends on n). We also have that for every
x ∈ {0,1}n, ∥α(n)x ∥2 ≤

√
µ since the mean number of photons of ∥α(n)x ⟫ is equal to ∥α

(n)
x ∥2

2. Using
these we can bound the number of modes m with the help of a sphere packing argument. Let
A ∶=

√
µ + δ′/2. Observe that

⋃
x∈S

B(α
(n)
x ,

δ′

2
) ⊂ B(0,A)

where B(x, r) ∶= {y ∈ Cm ∶ ∥y − x∥2 < r}. In fact this is a disjoint union as can be seen from Eq.
4.14. Using the fact that Cm is equivalent to R2m for the purpose of integration, we have that

vol(⋃
x∈S

B(α
(n)
x ,

δ′

2
)) ≤ vol (B(0,A))

⇒ 2n (
δ′

2
)

2m

≤ A2m

⇒
n

2
≤m log2 (

2A

δ′
)

⇒
n

2
≤m log2 (

2A

(2 ln(1/δ))1/2
) . (4.15)

[2]We essentially require that supn≥1 δ(n) < 1.
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where we used the fact that the sets are disjoint in the second step. We can also eliminate δ in
the above equation by using the fact that δ ≤ 1 − εexp for a fixed εexp and that the equation above
is increasing in δ. We then get

n

2
≤m log2 (1 +

√
µ

2 ln(1/(1 − εexp))
) . (4.16)

or that m log(µ) = Ω(n) practically. It should be observed that this is substantially stronger than
the general bound presented earlier (Eq. 4.11). If we suppose that m = O(nc) for 0 < c < 1,
then the mean photon number satisfies µ ≥ 2Ω(n1−c), i.e., the mean photon number would increase
exponentially in n1−c, which would be very undesirable experimentally. Finally, in the case of a
family of quantum protocols with constant mean number of photons, we have that

m = Ω(n)

assuming the aforementioned experimental limitations. Let us define the rate of a coherent state
QFP protocol to be the ratio n/m. For the purpose of comparison with current protocols, we will
try to use the bound above to propose a practical coherent state QFP protocol with a high rate.
Observe that if we assume that our class of coherent state QFP protocols satisfies δ(n) ≤ ε for
some constant ε < 1, then the above bound is again valid, i.e.,

n

m
≤ 2 log2 (1 +

√
µ

2 ln(1/ε)
) . (4.17)

In Appendix A.3, we show that for such a class of protocols the Referee can also use the
interference measurement described in Section 4.2.2.2 and solve the Equality problem with an
error at most ε. If we use amplitude vectors which optimally pack the sphere while being at least
(2 ln(1/ε))1/2 distance apart, then we can reach the bound on the rate on the right hand side of
Eq. 4.17. Moreover, our protocol would have an error at most ε. Using Theorem 4.2 and the
argument following it, we can also show that the information leakage for such a protocol would
also be logarithmic. For µ = 103 and ε = 0.01, the bound on the right hand side of Eq. 4.17 is 7,
whereas the rate of the coherent state QFP protocol[3] is typically around 0.3. Thus, if we are
able to use these states, then we can improve the rate of coherent state QFP protocol by a factor
of about 20.

More generally, let us consider µ = 103 and εexp = 10−6 in Eq. 4.16, which is a very generous
experimental limitation. This is equivalent to assuming that we can experimentally prepare two
states ρ, σ accurately as long as the fidelity satisfies F (ρ, σ) ≤ 1 − 10−6. Even in this case we
get an upper bound of 29 on the rate. Taken together these results allow us to narrow down the
maximum rate of coherent state QFP protocols to within a factor of about 4.

[3]Assuming δ ≈ 0.2 in the QFP protocol and using the Gilbert-Varshamov bound.
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4.4 Conclusion

In this chapter, we discussed quantum fingerprinting using coherent states. We described the
tools and results we used for the experiment on quantum fingerprinting. We saw that in order to
beat the classical information leakage bound the experiment needs to run at string lengths of the
order of 1011, which is very difficult experimentally. Motivated by this we studied the tradeoff
between the growth of the number of modes and the mean number of photons required to solve
the Equality problem optically. We developed lower bounds for the growth of these resources
for general problems and protocols. For fixed photon number protocols to solve the Equality
problem, we saw that the number of modes m grew as log(m) = Ω(log(n)). We strengthened
this bound tom = Ω(n) for fixed photon number coherent state quantum fingerprinting protocols,
which are based on the protocol given in Ref. [7]. We hope that our work can be used as a guide
for the construction of better optical protocols.
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Chapter 5

Erasable Bit Commitment with
Temporarily Trusted Parties

5.1 Introduction

5.1.1 Background

It is well known that unconditional bit commitment between two parties cannot be implemented
classically or even by utilizing quantum resources [44–48]. Several different relaxations on the
security requirements of bit commitment have been studied in the past. In the classical setting,
the most notable of these are settings which require bit commitment to either be statistically
binding and computationally hiding, or computationally binding and statistically hiding. On the
other hand, in the quantum setting unconditionally secure bit commitment can be implemented if
one assumes that the adversaries have small or noisy quantum memories (see, e.g., [13, 49–51]
and reference therein).

Another possible way of implementing bit commitment is to use a trusted third party, who is
honest during the protocol. (See [52] for a variant where the trusted party only helps to initialize
the protocol.) To commit to a bit b, Alice and Bob first share a secret key k. Then, Alice sends
(b ⊕ k) to the third party (through a private channel), who stores the bit until the open phase.
During the open phase, Alice simply asks the trusted party to reveal the bit (b ⊕ k) to Bob,
who is able to extract b from it. Since, the third party is honest, he does not reveal the bit to
Bob (Hiding for Bob) and he also does not change the value of the bit after the commit phase
(Binding for Alice). Furthermore, the protocol is even hiding for the trusted party, as he cannot
determine b unless someone tells him k.

Suppose, however, that Alice decides to abandon the commitment instead of opening it. If
it is the case that Alice can trust the third party forever, Alice’s commitment remains a secret
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from Bob for all future times. This case, though, is improbable. It is possible that the third party
becomes an adversary to Alice and colludes with Bob after the conclusion of the protocol. If
Bob and the third party get together after the protocol, then they can figure out the value of the
bit Alice was committed to.

5.1.2 Simple protocol for erasable bit commitment from temporary quan-
tum trust

In fact, due to the no-go theorem for classical bit commitment no classical protocol which is
binding for Alice can satisfy a hiding property for both Bob and the trusted party together once
the protocol is over. On the other hand, one can use quantum mechanics to create a protocol,
which only requires Alice and Bob to temporarily trust the third party during the course of the
protocol. The basic idea of this protocol, implementing a primitive which we term erasable bit
commitment (EBC), can be explained by modifying the aforementioned classical protocol.

First, Alice and Bob share secret bits θ and k. In order to commit to bit b, Alice sends the
state Hθ ∣b⊕ k⟩ (where H is the Hadamard gate) to the third party in order to commit to b. To
open the commitment, Alice asks the third party to forward the state to Bob, who can invert
the Hadamard depending on the value of the secret bit θ, and open b. Furthermore, in case
Alice decides to abandon the commitment, she can ask for an ”erasure”, that is, ask the third
party to send her the state back. In this case, once the protocol is over, even if the trusted party
and Bob get together, they will not be able to figure out Alice’s commitment. The secret bits
Bob shared with Alice were not correlated with Alice’s commitment. Whereas, since the third
party honestly returned the quantum state back to Alice, he too would not have any information
about Alice’s commitment. Unlike the classical setting, this primitive is possible in the quantum
setting due to the no-cloning theorem.

Note that if the trust time is limited, the possibility for Alice to ask for an erasure at the end
of the trust period is necessary. In fact, it could happen that the condition for Alice to issue
the open command is not met during the trust period. In such a case, she needs to be able to
abort given that the end of the trust period is looming! The erasure command allows her to
abort while still ensuring that her data is not revealed to Bob or the third party in the future,
even if she can no longer trust the third party anymore. Additionally, the erasure command is
announced publically so that Bob knows that Alice has abandoned her commitment and may not
be committed to a classical value anymore.

The chapter is organised as follows. We begin by introducing the temporarily trusted party
setting in the next section. Then, we describe the erasable bit commitment primitive and the
security requirements for such a primtive. Following this we present a robust protocol for this
primitive based on BB84 states and prove its security informally. In Section 5.6, we state our
claims concerning additional security guarantees. The conclusion discusses how our protocol
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avoids the no-go results for quantum bit commitment and also compare our protocol to other
variants on quantum bit commitment. In the Appendix, we describe our channel noise model,
prove the impossibility of classical protocols for erasable bit commitment in a trusted party
setting and then formally state definitions and provide security proofs.

5.2 Temporarily trusted party setting

In this section, we describe the temporarily trusted party setting, which we use to implement
erasable bit commitment. As stated earlier, the idea is to try to use trusted third parties to imple-
ment protocols which cannot be implemented in a two party setting. Further, we do not wish to
trust the parties for eternity, we would like to trust them only temporarily for the duration of the
protocol. In this section, we formally define what we mean when we use the term trust. We also
wish to allow for a certain number of dishonest or corrupted trusted parties. We state the trust
guarantee in the presence of such parties as well.

5.2.1 Quantum honest-but-curious parties

We would like our trusted parties to behave in a manner which is indistinguishable from an
honest party to an external observer. We call such behaviour quantum-honest-but-curious
behaviour. In particular, the input-output behaviour of quantum honest-but-curious parties is
consistent with that of honest participants during the protocol. However, these parties may
try to gather as much information as possible during the protocol. We base our definition
of δ−honest-but-curious parties on the definition of specious adversaries given by [53]. The
definition considered by Ref. [53] is suited for the case of two parties where at most one of
those can be honest-but-curious. We generalize this definition to a setting with p number of
parties.

Similar to the previous definition, we define a party to be honest-but-curious if at each step
of the protocol it can prove to an external auditor that it has been following the protocol honestly.
Specifically, at any stage during the protocol the honest-but-curious party should be able to apply
a local map to its state to make its behaviour indistinguishable from that of an honest party.
Further, we also require that the party announces any deviations from the protocol publicly. This
behaviour is encapsulated in the following definition.

Definition 5.1 (δ-honest-but-curious party). Consider a k-step protocol between the parties
(Pn)

p
n=1. Let ρP1...Pp be an initial state distributed between these parties and ρP ′1...P ′pR an

extension of this state to some reference system R. In the following, we say that the parties
follow a strategy (P ′

n)
p
n=1 if at step j of the protocol the joint state of all the parties is Φ

(j)
P ′1...P

′
p
(ρ).

Further, we denote the honest strategy of party Pn by Pn and a general (possibly adversarial)
strategy by P ′

n.
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For a k-step protocol between the parties (Pn)
p
n=1, the party Pi (and equivalently the strategy of

Pi) is said to be δ−honest-but-curious if

1. For every strategy of the other parties P ′

ī
∶= (P ′

n)n≠i, every initial state ρPiPīR and for every
step in the protocol j ∈ [k], there exists a local CPTP map Tj such that

((Tj)P ′i ⊗ IP ′ī ) Φ
(j)
P ′iP

′

ī

(ρPiPīR) ≈δ Φ
(j)
PiP ′ī

(ρPiPīR) (5.1)

where Φ
(j)
PiP ′ī

(Φ(j)P ′iP ′ī
) is the map applied on the initial state after step j if party Pi follows

the protocol honestly (dishonestly) and the other parties follow P ′

ī
.

2. The party Pi publicly announces if it receives any input or message from any party which
deviates from the protocol, in particular if party Pi expects to receive an n-dimensional
quantum state and receives something lying outside of that space, it publicly announces
the deviation.

It should be noted at this point that the second requirement above precludes the possibility
of the honest-but-curious nodes communicating and collaborating during a protocol. This is
different from the definition of classical specious adversaries considered by Ref. [53], who
allow the specious adversaries to collaborate freely. In the scenario considered in Ref. [53],
this was reasonable since they only considered specious adversaries. In our setting, however,
we consider both honest-but-curious adversaries and dishonest adversaries. We cannot expect
the participants to know beforehand which parties are honest-but-curious and which ones are
dishonest. Therefore, we further require that the honest-but-curious nodes do not interact with
other parties unless they are required to do so according to the protocol. This assumption,
though, can be lifted in our protocol, as we will show in our additional security claim of
’Expungement on successful runs’ (Sec. 5.6.2).

In Appendix B.3.3.1, we show that if a quantum honest-but-curious party is given a quantum
state at some point during a protocol, and is asked to return it at a later point in the protocol, we
can be certain that the state returned by him was almost the same as the one given to him earlier
up to tensoring of a fixed state. Specifically, suppose that the honest-but-curious party T is given
a state ρTR during the protocol, and is asked to send his share to party P at a later point. Then,
the state ρ′RPT ′ (where T ′ is a memory held by T ) sent by T satisfies

ρ′PRT ′ ≈O(
√
δ) (IR ⊗ IT→P )ρRT ⊗ τT ′ .

for some fixed state τ . (See Lemma B.2 for formal statement). We see that in this scenario the
honest-but-curious party is forced to be almost honest in this scenario. In this chapter, we will
therefore assume that the honest-but-curious nodes act completely honestly during the protocol
for simplicity, since we will only be dealing with the action of honest-but-curious parties in
scenarios like this. Formally, this corresponds to assuming δ = 0 or assuming the parties to be
perfectly-honest-but-curious. This does not lead to loss of generality and the security arguments
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remain almost the same. A more careful analysis of the behaviour of such parties during our
protocol is provided in the Appendix B.3.3. Lastly, since the memory of the honest-but-curious
parties after giving away the state ρRT is almost decoupled from that state, we say that the
honest-but-curious party forgets the state he received.

5.2.2 Temporarily trusted party setting

In addition to the usual two parties, Alice and Bob, involved in a bit commitment protocol,
there are also additional trusted third parties T1, . . . ,Tm involved in the temporarily trusted party
settings we consider. For the purpose of this chapter, we refer to all the additional trusted third
parties T1, . . . ,Tm as trusted parties or trusted nodes. Alice and Bob both trust that out of these
m trusted parties at least (m − t) will act quantum honest-but-curiously for the duration of the
protocol. In the context of the definition of honest-but-curious above, in our setting the parties
are (A,B,T1,⋯,Tm), and there exists a subset E ⊂ [m] such that ∣E∣ ≤ t and for all j /∈ E the
party Tj is quantum honest-but-curious. Further, the EBC protocol is a two step protocol as will
be seen later. The rest of the third parties (at most t in number) can behave dishonestly during
the protocol and even collaborate with the cheating party. We use the term ’adversaries’ during
the protocol to denote the cheating party (dishonest Alice or dishonest Bob) along with the
dishonest trusted nodes.

Further, this trust assumption is temporary or time-limited: after the end of the regular dura-
tion of the protocol, Alice and Bob do not have any guarantee about the behaviour of the third
parties. They can no longer assume that the Ti’s behave honestly. These parties could act adver-
sarially after the end of the protocol and even collaborate with a dishonest Alice or a dishonest
Bob.

5.3 Erasable bit commitment in a setting with temporarily
trusted parties

Erasable bit commitment (EBC) is a protocol between two parties, Alice and Bob, in a setting
with m additional trusted parties, at most t of which are dishonest and adversarial during the
protocol. The protocol has two phases: a commit phase, followed by one of either an open or
an erase phase. During the commit phase, Alice inputs a string s and Bob receives a message
notifying him that Alice has completed the commit phase. At the end of this stage, she is
committed to this string, that is, if the commitment is ’opened’ then Bob will receive s or
reject the commitment. Moreover, the commitment is hidden from Alice’s adversaries (Bob
and dishonest nodes collaborating with him) at this stage. After the commit phase, Alice can
choose to open or erase the commitment. In case of an open, Bob receives the string s, the string
Alice was committed to. Further, in this case, even if all the trusted parties get together after the
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protocol they cannot determine s. In case Alice chooses to erase, then once the protocol is over,
even if Bob and all the trusted parties collaborate they cannot ascertain the value of s.

In the rest of the chapter, we consider a randomized version of erasable bit commitment.
Randomized EBC is essentially the same as above except now Alice does not have any input
during the commit stage. Instead of choosing the string for her commitment as above, Alice
receives a random string c at the end of the commit phase, which is called as her commitment.
This randomized EBC can easily be converted into a EBC like above by asking Alice to send
s⊕ c to Bob after the commit phase (See Ref. [13]).

Thus, in the randomized EBC protocol (referred to as EBC here on) Alice and Bob do not
have any inputs during the commit phase. Alice inputs an ”open” or ”erase” bit at some point
after the commit phase into the protocol. In addition to the commitment cmentioned above, Alice
and Bob also receive flags FA and FB (let F = FA = FB) notifying them if Alice called for an
erase (F = erase), or if the open was successful (F = success) or if the open failed (F = failure).
In general if Alice is dishonest, Bob may not receive the same string as Alice. So, we call Bob’s
output ĉ. To summarize, the outputs of the protocol for Alice and Bob are as follows:

• Alice outputs a string c ∈ {0,1}` at the end of the commit phase, and a flag FA ∈

{success, failure, erase} at the end of either the open or erase phase;

• Bob outputs a string ĉ ∈ {0,1}` as well as a flag FB ∈ {success, failure, erase} at the end
of either the open or erase phase.

5.3.1 Security requirements for erasable bit commitment:

Given m trusted nodes (Ti)
m
i=1 of which at least (m − t) act quantum honest-but-curiously for

the duration of the protocol, an erasable bit commitment protocol satisfies the following security
requirements:

1. Correctness: If both Alice and Bob are honest and Alice receives c during the commit
phase, then, in the case of open, Bob accepts the commitment (F = success) and ĉ = c.

2. Binding: If Bob is honest, then, after the commit phase, there exists a classical variable
C̃ such that Alice is commited to C̃, i.e. during the open phase, either Bob accepts the
commitment (FB = success) and receives an output Ĉ such that Ĉ = C̃, or Bob rejects the
commitment (FB = failure). (This guarantee only makes sense in the case that the open
protocol is run after the commit protocol; if an erase protocol is run instead, then Alice
does not have to be committed to a classical value anymore.)

3. Hiding:
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(a) Commit: If Alice is honest and she receives the output c during the commit phase,
then, after the commit phase and before the open or erase phase, Bob and the dishon-
est trusted nodes together can only extract negligible information about c, i.e., their
joint state is almost decoupled from Alice’s commitment.

(b) Open: If Alice and Bob are honest and Alice’s commitment is c, then, after an open
phase, the Ti’s together can only extract negligible information about c, i.e., their joint
state is almost decoupled from Alice’s commitment.

(c) Erase: If Alice is honest and she receives the output c during the commit phase, then,
after the erase phase, Bob and the Ti’s together can only extract negligible information
about c, i.e., their joint state is almost decoupled from Alice’s commitment.

We give more formal security definitions based on the security definitions for bit commit-
ment given in Ref. [13] in Appendix B.3. One can easily check that the simple protocol given in
Section 5.1.2 satisfies these requirements (if we consider m = 1, t = 0 and δ = 0).

Lastly, it should be noted that the binding condition for EBC is weaker than the corresponding
binding condition for bit commitment. In EBC, Alice is only committed to a classical value if the
commitment is opened. This makes EBC a weaker primitive than bit commitment. For example,
we cannot use a general EBC protocol instead of bit commitment to implement oblivious transfer
(OT) using the protocol given in Ref. [54]. If we attempt to do so in a straightforward fashion,
then the OT protocol, hence created, could possibly be susceptible to a superposition attack by
Bob. However, we should note that even though EBC is weaker than bit commitment, it cannot
be implemented quantum mecahnically in the two-party setting without additional assumptions.
The no-go theorem for two-party quantum bit commitment [44, 45] precludes the possibility of
a protocol which is both hiding and binding after the commit phase, as EBC is.

5.4 Robust Protocol for EBC based on BB84 states

In this section, we will develop a protocol for EBC using BB84 states which is robust to noise
and a small non-zero number of dishonest trusted nodes. This will be done by modifying the
simple protocol presented in Section 5.1.2. We use tools like privacy amplification and classical
error correcting codes for this purpose. Before we proceed further, however, we describe our
channel assumptions and our noise model.

5.4.1 Channel assumptions

We assume that the communication between the participants is done over secure (private and
authenticated) channels between each pair of participants. We assume that the classical channels
are noiseless, but we allow the quantum channels to be noisy. The fact that the quantum channels
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are noisy somewhat complicates the authentication part of the security guarantee: we cannot
simply guarantee that the state output by the channel will be the state which was input. For
simplicity, we assume the following, weaker, authentication guarantee with a simple model of
adversarial noise: if the quantum channel in one direction between a pair of participants is used n
times at some timestep, then at least (1−γ)n of these transmissions will be transmitted perfectly,
while the other at most γn transmissions might be arbitrarily corrupted by the adversary. Note
that this is sufficient to model some random noise, for example, depolarizing noise, except with
negligible probability.

Also note that we could use a shared secret key between sender and receiver together
with variants of various quantum cryptography techniques, e.g., that of the trap authentication
scheme [55], to obtain guarantees that with high probability, the actual channel acts as a superpo-
sition over such type of bounded noise channels (in the sense of the adversarial channels of [56]).
We leave a detailed analysis of how to implement such a variant of our guarantee in practical set-
tings and the proof of security of our scheme in such settings for future work. Also note that we
do not assume any minimal noise level on the channels; guarantees on minimal noise level can
be sufficient to allow one to implement cryptographic primitives like bit commitment (see, e.g.,
Ref. [57]).

We do not have any synchronicity assumptions; time-stamping can be achieved, for example,
by broadcasting (with potential abort if some participant is dishonest) end-of-time-step signals.

5.4.2 High-level description

We consider a setting with m trusted third parties, at most t of which can be dishonest. To
understand the tools and the structure of the robust protocol, we try to extend the simple protocol
presented in Section 5.1.2 in a straightforward fashion. Imagine that Alice wishes to commit to
the string x ∈ {0,1}k (this can be selected randomly to perform randomized EBC). To commit
to x, during the commit phase, Alice randomly selects a basis θ ∈R {0,1}k and a key v ∈ {0,1}k,
and distributes the state ∣ψ⟩ = Hθ ∣x⊕ v⟩ to the m-trusted parties, giving k/m qubits to each
party. Further, she sends θ and v to Bob. In case Alice chooses to open, the trusted parties
simply forward their shares to Bob and in case she chooses to erase, they send their states back
to Alice. If everyone is honest during the protocol and there is no noise, then the string decoded
by Bob, x̂, is the same as x. However, if some qubits sent to Bob are corrupted by the dishonest
trusted nodes or noise then x̂ ≠ x. In order to circumvent this problem, we have Alice first
encode her string x as y = Enc(x) using a pre-agreed [n, k, d]-classical error correcting code
(ECC) with appropriate parameters and then sends it to the trusted parties. Not only would this
allow the protocol to be robust to noise, it will also help ensure that the protocol is binding for
Alice by making sure that Alice and the adversarial nodes cannot change the commitment ”too
much”. Further, if in such a protocol t trusted parties collaborate with Bob, then they would
know y for tn/m positions. This would provide Bob with some partial information about Alice’s
commitment x. Therefore, we require Alice to use privacy amplification (PA) to extract a shorter
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commitment c = Ext(x, r), which would be almost decoupled from her adversaries’ share using
a randomness extractor Ext. Here r ∈R R is picked by Alice before the commit phase and sent
to Bob during the commit phase. In the next section, we will show how we can choose the right
parameters to ensure that the other security requirements are also met.

We describe the structure of our protocol before we discuss our parameter choices. Fix an
error correcting code with encoding map Enc and minimum distance d, and the randomness
extractor Ext. Our protocol has the following structure:

Commit: Alice randomly selects a x ∈R {0,1}k, z ∈R {0,1}n, θ ∈R {0,1}n and r ∈R R.
She outputs the random commitment c = Ext(x, r). Let y ∶= Enc(x) and u ∶= y ⊕ z. She then
distributes the qubits of ∣ψ⟩ ∶= Hθ ∣u⟩ equally between the trusted nodes and privately sends the
classical information (θ, z, r) to Bob.

Open: Alice publicly announces ’open’ and sends x to Bob privately. The trusted parties
forward their shares of ∣ψ⟩ to Bob. Bob measures ∣ψ⟩ in θ basis and checks if the outcome agrees
with x.

Erase: Alice publicly announces ’erase’. During the erase phase, the trusted nodes send
their shares of ∣ψ⟩ back to Alice.

We have added an extra step above, which we did not discuss earlier. Specifically, we xor
the encoding of x with a random string z. This does not affect the discussion above and will be
useful to prove an additional security property for the protocol (specifically the ’Expungement
on successful runs’ property proved in Sec. 5.6.2).

5.4.3 Choice of parameters

Consider the protocol given in the structure above. Let’s start by looking at the case when both
Alice and Bob are honest, and t of the trusted nodes act adversarially. We also account for at
most γn of the transmissions being corrupted by the adversaries according to the channel model.
Suppose ψ̃ is the state forwarded to Bob by the trusted parties. Let û be the string measured by
Bob when he measures ψ̃ in the θ basis and let ŷ ∶= û ⊕ z. Since there are at most t dishonest
trusted nodes, we have that h(y, ŷ) ≤ (t/m + γ)n. So, if Alice encodes k randomly chosen bits
x into y = Enc(x) using a [n, k, d] ECC with minimum distance d satisfying d > 2(t/m + γ)n,
then y is the only codeword satisfying h(y, ŷ) ≤ (t/m + γ)n and Bob can agree with Alice’s x
despite t of the trusted nodes being active adversaries.

Next, we consider the case when Alice collaborates with these t adversary Ti’s. In this
scenario, is the protocol binding or could Alice hope to change her commitment during the
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(a) Commit phase (b) Open phase

(c) Erase phase

Figure 5.1: The structure of the protocol is depicted here. During the commit phase, Alice sends
∣ψ⟩ to the trusted parties and (z, r, θ) to Bob. In case Alice chooses to open, the quantum state is
forwarded to Bob. Whereas, in case of an erase, it is returned back to Alice.

open phase after the commit phase? Suppose that the minimum distance of the ECC is
d = 2tn/m + 1. Then, it is possible that Alice could pick ỹ such that there exist x1 and x2

and corresponding codewords y1 = Enc(x1) and y2 = Enc(x2) satisfying h(ỹ, y1) = tn/m
and h(ỹ, y2) = tn/m + 1. Alice could then collaborate with the t adversarial trusted nodes
to make Bob decode either x1 or x2 at the open phase. In order to avoid this, we require an
ECC with a minimum distance d > 4(t/m + γ)n, and only have Bob accept the commitment
if ŷ is within a distance (t/m + γ)n of an actual codeword. Otherwise, Bob outputs ”failure”
because he is convinced that Alice did not provide a valid commitment. In this way, we can en-
sure that Alice cannot change the value of the commitment that she opens after the commit phase.

Finally, we look at the hiding properties of the protocol. First, observe that after the commit
phase Bob and the adversarial trusted nodes have access to at most (t/m + γ)n information
about y. Depending on the ECC, this might reveal at most (t/m + γ)n bits of information
about x. Hence, we want to ensure that privacy amplification is applied such that (t/m + γ)n
bits of information about x reveal almost no information about Alice’s commitment which is
c = Ext(x, r). For this purpose, we would like the parameter k of the ECC to be large enough
compared to (t/m + γ)n, so that the output length ` of the randomness extractor used during
privacy amplification is Θ(n) and we can get exponential security in n. Therefore, we choose
k = Θ(n), and ` = Θ(n) such that k − (t/m + γ)n − ` = Ω(n).

In this way, the information held by the adversary is essentially decoupled from Alice’s com-
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mitment c after the commit phase, as well as after the protocol in both the case of an open and
an erase. After the protocol, the (m − t) honest-but-curious trusted nodes completely forget the
quantum states they held and hence any information about x. As a result, they have no informa-
tion about c either at the end of the protocol. Furthermore, the information held by the adversaries
in both the case of an open and an erase is lesser than (t/m + γ)n. Thus, even if all the trusted
parties and adversaries get together they would be almost decoupled from Alice’s commitment.

5.4.4 Protocol

Given a security parameter n, Alice and Bob agree on an [n, k, d] ECC with encoding map
Enc ∶ {0,1}k → {0,1}n, as well as a randomness extractor Ext ∶ {0,1}k ×R → {0,1}` for some
` which we will now define.

Let γ be the tolerable noise level. We consider a setting with m temporarily trusted nodes
at most t of which act dishonestly during the protocol. As discussed above, we fix the various
parameters for ECC and PA as follows. For some parameters δc > 0 and δ′ > 0:

• k = ( t
m + γ + δc + δ′)n

• ` = δcn

• d = 4( t
m + γ) n + 1

Existence of ECC and PA schemes with these parameters: It should be noted that (t/m + γ)
should be small to allow for the existence of ECC with the above parameters. For example, we
can use the Gilbert Varshamov bound [58] to prove that such codes exist for parameters (t,m, γ)
for which

t

m
+ γ < 1 −H2 (4(

t

m
+ γ))

for large enough n (here H2(⋅) is the binary entropy function). This is inequality is satisfied as
long as t/m + γ ≤ 0.083. The existence of PA schemes follows from the privacy amplification
theorem (see, e.g., Ref. [22] for an early version robust to quantum side information).

The three phases of the protocol are as follows.

Commit phase

1. Alice randomly picks x ∈R {0,1}k, z ∈R {0,1}n, r ∈R R, θ ∈R {0,1}n.

2. Alice computes c = Ext(x, r), y = Enc(x), u = y ⊕ z.
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3. Alice sends z, r, θ to Bob, who acknowledges reception through broadcast.

4. Alice prepares ∣ψ⟩ =Hθ ∣u⟩.

5. Alice distributes the qubits of ∣ψ⟩ evenly between T1 . . .Tm (sends n/m qubits to each
trusted party).

6. T1 . . .Tm verify that ψ is in span {∣0⟩ , ∣1⟩}n, and all acknowledge reception through broad-
cast.

7. Alice outputs c ∈ {0,1}`.

Open phase

1. On input ”open”, Alice broadcasts ”open” and sends x to Bob.

2. T1 . . .Tm send ψ to Bob.

3. Bob measures Hθ(ψ) in computational basis, gets outcome û.

4. Bob decodes ŷ = û⊕ z.

5. Bob computes y′ = Enc(x) and h = h(ŷ, y′).

6. If h > ( t
m + γ)n, Bob outputs ĉ = 0` and FB = failure, else output ĉ = Ext(x, r) and

FB = success. Bob broadcasts FB and Alice outputs FA = FB.

Erase phase

1. On input ”erase”, Alice broadcasts ”erase”.

2. T1 . . .Tm send ψ back to Alice.

3. Alice measures Hθ(ψ) in computational basis, gets outcome û.

4. Alice computes ŷ = û⊕ z and h = h(ŷ, y).

5. If h > ( t
m + γ)n, Alice outputs FA = failure, else she output FA = erase.

6. Alice broadcasts FB and Bob outputs FB = FA and ĉ = 0`.
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5.5 Security of the protocol

We now informally prove that our protocol satisfies the security requirements given in Section
5.3.1. Throughout we assume that we are in a setting with m temporarily trusted third parties
Ti’s out of which at most t can be dishonest during the protocol, and that γ is the acceptable
rate of noise for the quantum channels. After the completion of the protocol, the trusted parties
may bring the information they gathered during the protocol together and collaborate with the
adversaries. Once again, we point the reader to Appendix B.3.3 for formal security definitions
and their proofs.

5.5.1 Correctness: Dishonest trusted nodes cannot change the commit-
ment

Claim 1. For honest Alice and honest Bob, the protocol is correct: If Alice outputs c during the
commit phase, then Bob outputs ĉ = c and FB = success during the open phase..

Suppose Alice follows the protocol honestly and prepares (x, r, z, θ) and ∣ψ⟩ as required by
the protocol. Then, her output is c = Ext(x, r). Since, at least (m − t) of the trusted nodes are
honest-but-curious during the protocol, the ŷ measured by Bob satisfies h(y, ŷ) ≤ (t/m + γ)n as
the adversarial trusted nodes only have access to at most (t/m + γ)n qubits. Thus, Bob accepts
Alice’s x and outputs ĉ which is equal to c.

5.5.2 Binding for Alice after the commit phase

Claim 2. For an honest Bob, the protocol is binding for Alice after the execution of the commit
phase: After the commit phase, there exists a classical variable C̃ such that Alice is commited
to C̃, i.e. during the open phase, with high probability, either Bob accepts the commitment
(FB = success) and receives an output Ĉ such that Ĉ = C̃, or Bob rejects the commitment
(FB = failure). (As before this guarantee only makes sense in the case that the open protocol is
run after the commit protocol.)

Suppose Alice sends some ρ̃ to the trusted nodes and (θ, r, z) to Bob. Once they are handed
over to the trusted nodes, all the qubits of ρ̃, except for at most (t/m + γ)n qubits which are
controlled by the dishonest Ti’s and adversarial noise, remain unchanged. Therefore, if we can
show that Alice can’t change her commitment by modifying any set of (t/m+γ)n qubits we will
be done. This is achieved by using a classical ECC with distance d > 4(t/m + γ)n and having
Bob reject the received message ŷ when there is no codeword in a (t/m + γ)n ball around ŷ.

The fact that Alice is committed to a classical variable C̃ after the commit phase if the com-
mitment were to be opened can be seen by using a simulator based argument. Fundamentally,
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if the open phase were to be conducted right after the commit phase then Bob would measure
a random variable Ỹ when he measures ρ̃ in the θ basis and xors the output with z. He could
then use Ỹ to figure out Alice’s commitment C̃. It will be shown that once Alice commits to
a particular instance of this random variable, she cannot change it during the open phase. A
formal simulator based argument for this is given in Appendix B.3.3.4.

After the commit phase, we define Ỹ as above. Let us consider a particular instance of
this random variable ỹ. Let ȳ be a codeword at a distance less than or equal to 2(t/m + γ)n
away from ỹ. Note that there exists at most one such ȳ since the minimum distance d satisfies
d = 4(t/m + γ)n + 1. If there is no such ȳ, then even after modifying (t/m + γ)n positions of
ỹ the distance from any codeword is still greater than (t/m + γ)n and Bob rejects any x Alice
tries to open, so let us focus on the case where there exists a unique such ȳ. We will show that
in this instance Bob either accepts the commitment corresponding to ȳ or the protocol ends in
failure. Let ŷ be as defined in the protocol. Alice’s actions can either bring ŷ closer to ȳ or take
it away from it. If her actions manage to get ŷ within a distance of (t/m + γ)n from ȳ, then the
commitment corresponding to ȳ would be accepted by Bob. On the other hand, no matter how
she modifies her string, she cannot come within a distance of (t/m+γ)n of some other codeword
y′, since the distance between y′ and ỹ would be greater than 2(t/m+γ)n and she only has access
to (t/m + γ)n qubits. Since for every instance of Ỹ Alice cannot change her commitment after
the commit phase, the protocol is binding.

5.5.3 Hiding for the adversaries after the commit phase

Claim 3. The protocol is hiding for honest Alice after commit: If Alice is honest and she receives
the output c during the commit phase, then, after the commit phase and before the open or erase
phase, Bob and the dishonest trusted nodes together can only extract negligible information
about c, i.e., their joint state is almost decoupled from Alice’s commitment.

Let E be the set of dishonest trusted parties and Ē the set of honest-but-curious nodes. To-
gether the adversaries have access to at most (t/m + γ)n qubits of ∣ψ⟩, z and θ. Let’s say the
adversaries’ qubits are in the quantum memory TE . Further, suppose that these qubits encode the
string yE (the string y corresponding to the positions of the qubits held by E). Then, we have

Hmin(X ∣TE, Z,Θ) = Hmin(Y ∣TE, Z,Θ)

≥ Hmin(Y ∣YE, Z,Θ)

= Hmin(Y ∣YE)

≥ Hmin(Y ) − ∣YE ∣

= Hmin(X) − ∣YE ∣

≥ k − (
t

m
+ γ)

= (δc + δ
′)n.

65



The first equality follows since Y = Enc(X) and Enc is a deterministic one-to-one function, the
inequality on the second line is a result of applying the data processing inequality, the equality
in the third line follows from the fact that Z,Θ are independent of Y and the inequality in the
fourth line follows from the chain rule for min-entropy (∣YE ∣ is the length of the string YE).

Since ` = δcn, Hmin(X ∣TE, Z,Θ) − ` ≥ δ′n and by PA theorem, it holds that for any set
of adversaries with access limited to these many qubits, the quantum memory TE is almost
independant of the output c of Alice’s randomized commitment, even if one is given z and θ.
Hence, the claim holds true.

5.5.4 Hiding for all trusted parties and Bob together after the erase phase

Claim 4. The protocol is hiding for honest Alice after the erase phase: If Alice is honest and
she receives the output c during the commit phase, then, after the erase phase, Bob and the Ti’s
together can only extract negligible information about c, i.e., their joint state is almost decoupled
from Alice’s commitment.

At the end of the erase phase, once again all the parties together have at most (t/m + γ)n
qubits of ∣ψ⟩. The rest of the qubits are completely forgotten by the (m− t) quantum honest-but-
curious nodes, and the content of their register TĒ is independent of x. Further, Bob does not get
any additional information during the erase phase. Therefore, similar to above, we get

Hmin(X ∣TE, TĒ, Z,Θ) ≥ (δc + δ
′)n

and the hiding property holds for the Ti’s and Bob after the erase phase.

5.5.5 Hiding for all the trusted parties together after the open phase

Claim 5. The protocol is hiding for honest Alice and honest Bob after an open phase: If Alice
and Bob are honest and Alice’s commitment is c, then, after an open phase, the Ti’s together can
only extract negligible information about c, i.e., their joint state is almost decoupled from Alice’s
commitment.

The information held by all the trusted nodes in this case is lesser than their information in
the case of an erase. The claim follows easily by following the argument in Section 5.5.4.

5.6 Additional security properties

5.6.1 Decoupling of honest-but-curious nodes during the protocol

Our protocol satisfies a stronger hiding property than one given in Section 5.3.1. In addition to
being hiding for Bob and the dishonest trusted nodes during the commit stage, the protocol is also
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hiding for the honest-but-curious trusted nodes in the sense that the qubits they hold locally are
also approximately decoupled from Alice’s commitment. A similar strong security definition was
used by Ref. [53] for their protocols on secure evaluation of unitaries against honest-but-curious
adversaries. In particular, their security definition demands that at any point in the protocol the
state held by the honest-but-curious party can be reproduced by applying a quantum channel
on the honest-but-curious party’s share of the initial or final state. This definition ensures that
the honest-but-curious party never has access to more information than it needs to. It is based
on a definition given in Ref. [59] for statistical zero knowledge proofs. However, we feel that
this definition is too strong for our purposes, since in the quantum domain one can force the
honest-but-curious parties to ’forget’ quantum information. So, it is possible that at some point
in a protocol a honest-but-curious party holds too much information in its quantum state, but
the protocol is such that at a later point the party is forced to return the information and hence
’forgets’ it. This is the behaviour that we try to encapsulate in our security definition of erasable
bit commitment in a setting with temporarily trusted parties. We only insist that at the end of
the protocol, the state held by the honest-but-curious nodes are completely decoupled from the
commitment. Nevertheless, as mentioned earlier, the protocol presented in this chapter satisfies
the following stronger security requirement used by Ref. [53].

Claim 6. For an honest Alice, the protocol is locally hiding for all the honest-but-curious nodes:
the local quantum state of the honest-but-curious nodes is almost decoupled from Alice’s output
c throughout the protocol.

This can be proven using the same argument as that of hiding for adveraries (Sec. 5.5.3).
After the commit phase, an honest-but-curious node Ti for i ∈ Ē has access to only n/m qubits in
his quantum memory TĒi . Therefore, we once again have the following min-entropy guarantee

Hmin(X ∣TĒi) ≥ Hmin(X) − log(∣TĒi ∣)

≥ (δc + δ
′)n.

5.6.2 Expungement on successful runs

In this section, we show that our protocol has an additional property whenever it is successful,
namely that it guarantees that the commitment is indeed ’expunged’ from the memories of the
trusted nodes, or that the trusted nodes indeed ’forget’ about the commitment. In order to prove
this, we only need to assume that the trusted nodes did not collaborate with Bob. We do not
even need to assume that the trusted nodes acted honestly. The assumption that Bob does not
collaborate with the trusted nodes is necessary, since he knows the choice of basis θ, and given
the basis, the trusted parties could measure ∣ψ⟩ without disturbing it. In a sense, all we need
to implement our protocol are three sets of parties which do not communicate with each other
unless required by the protocol; this is similar to the type of assumptions used in relativistic
bit commitment and we further explore the link between our setting and that of relativistic bit
commitment in the conclusion. Hence, it seems that the trust assumption required by our protocol
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is fairly weak. Further, this security claim also allows us to move closer to the definition of
honest-but-curious parties in multi-party protocols given in Ref. [53], which permits such parties
to communicate and collaborate with each other.

5.6.2.1 Expungement after the erase phase

Claim 7. For an honest Alice and FA = erase, if Bob does not collaborate with the trusted parties
during the execution of the protocol, then the protocol is hiding for all the trusted parties and
Bob together after the execution of an erase phase, even if the trusted parties collaborate and act
arbitrarily during the protocol.

The setup for this is similar to one for QKD, with Alice after the erase phase acting as ”QKD-
Bob”. Since, we assume that Bob does not collaborate with the trusted parties, they must handle
∣ψ⟩ = Hθ ∣u⟩ and return it to Alice without knowing anything about θ or u. Upon receiving ψ
back, Alice measures it according to θ and only accepts if the measured error rate is at most γ.
This is indeed similar to a QKD setup, and standard methods [60–62] allow us to show that, even
if θ is revealed, in the case of an accepted run,

Hε
min(U ∣TΘ) ≥ n(1 −H2(γ + µε)) − δε, (5.2)

for parameters µε, δε, and T the memory held by the trusted parties after the erase phase. This
is not quite sufficient for our purposes, since we want to make sure that the min-entropy about
x is high even if, after the protocol, B and the Ti’s get together, i.e., we want to prove that
Hε′

min(X ∣TΘZ) is large. Using among other tools chain rules for smooth min-entropy [63], we
show precisely this in the Appendix B.5.2.

Note that we could even allow for Bob and a small set TE of the trusted nodes such that
E ⊂ [m] and ∣E∣ ≤ t to collaborate with Bob, as long as the remaining (m − t) trusted nodes do
not interact with TE and Bob.

5.6.2.2 Expungement after the open phase

Claim 8. For honest Alice and honest Bob, and FA = FB = success after the execution of an
open, the protocol is hiding for all the trusted nodes even if they collaborate and act arbitrarily
during the protocol.

The argument follows similarly as for the previous claim, now with Bob acting as ”QKD-
Bob”, except that the adversary has even less information since we assume Alice and Bob are
both honest.
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5.7 Conclusion

5.7.1 Avoiding quantum no-go results

In this work, we introduced a new primitive, erasable bit commitment, as well as a new paradigm,
that of temporary quantum trust. The temporary trust assumption allows us to avoid no-go results
for quantum bit commitment: if Bob and the trusted nodes were to put their information together
right after the commit phase, they would be able to extract the value of Alice’s commitment.
Hence, the protocol is not hiding against a coalition of Bob and all the trusted nodes. In fact, no
protocol which is hiding for both Bob and the trusted nodes can be binding for Alice according
to the no-go theorem for quantum bit commitment. As already noted, our robust protocol, which
makes use of a constant number of trusted nodes, is even robust against a coalition of Bob and
a small constant fraction of trusted nodes, as long as the other trusted nodes are indeed acting
honest-but-curiously and do not communicate with Bob during the execution period. Note that
for security against a dishonest Alice, we cannot guarantee that she is still committed to a classi-
cal value at the end of an erase phase. Hence, this primitive is weaker than a standard two-party
bit commitment whenever an erase rather than an open might be required.

5.7.2 Comparison to other variants on quantum bit commitment

5.7.2.1 Bounded and noisy quantum storage model:

In the bounded and noisy quantum storage model [13, 51, 64], security of bit commitment is
ensured by assuming that the parties do not have access to perfect quantum memory. This as-
sumption allows for the implementation of the stronger, regular version of bit commitment. In
our protocol, for the duration of the trust period, the trusted node must maintain Alice’s commit-
ment in memory, but they do not need to further manipulate it. In some sense, the requirements
here are complementary to those in the noisy storage model. In the noisy storage model, an hon-
est Alice waits for a long enough period for the content of a dishonest Bob’s quantum memory
to decay sufficiently before announcing her basis. Here, the temporary trust period must be suffi-
ciently short to prevent the contents of the trusted nodes’ quantum memories from decaying too
much before they are transmitted to Bob. Hence, as progress in physical implementations allows
for better and better quantum memory and the power of the noisy storage model decreases, our
model allows for longer trust period if so desired. We believe that efforts towards the physical
implementation of this protocol could be an interesting stepping stone towards more complicated
multi-node protocols.

5.7.2.2 Relativistic bit commitment:

In relativistic quantum bit commitment [65–68], Alice and Bob are split into various nodes at
different locations, and the security of the scheme follows from the impossibility of communi-
cation between these nodes which is enforced from relativistic constraints. Hence, Alice has to
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have complete trust into all of the nodes which are corresponding to her, and similarly for Bob.
Contrary to our temporary trust setting, there is no need for nodes which are trusted by both
parties. However, the mutual trust between all nodes associated to Alice is usually assumed to
be everlasting rather than time-limited as in our setting, and similarly for Bob. Similar to our
protocol, relativistic bit commitment is also weaker than bit commitment in the case where the
commitment is not opened.

It would be interesting to see if our protocol can be modified to fit the relativistic framework,
by splitting the temporarily trusted nodes into nodes which are temporarily trusted by Alice and
nodes which are temporarily trusted by Bob, while keeping only a single main Alice node and a
single main Bob node.

5.7.2.3 Cheat-sensitive bit commitment:

In cheat-sensitive bit commitment [69–71], it is possible that a dishonest party is able to cheat
with a non-trivial probability, but it can be caught cheating by the honest party with a non-zero
probability too. We prove something similar in one of our additional security claims. We showed
that if Bob does not communicate with the trusted nodes, then the trusted nodes cannot cheat
without getting caught with high probability. It might be possible to create stronger versions of
cheat-sensitive bit commitment in our trusted party setting.
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Chapter 6

Conclusion and Outlook

In this thesis, we studied optical communication protocols and cryptography with temporarily
trusted parties. We took the first steps towards reformulating quantum communication protocols
in terms of coherent states and understanding the resource tradeoffs for optical protocols. In
Chapter 3, we characterized the Gram matrices of coherent states in an attempt to understand
when it is possible to switch the qudit states used in a communication protocol with coherent
states. However, our work leaves several unanswered questions. An important one of these is
to determine if we can efficiently classify matrices as Gram matrices of coherent states or not.
The algorithm given in Section 3.2 for this task requires exp(O(n2)) time. It might be possible
to solve this task more efficiently by using semidefinite programming and rounding methods.
Furthermore, our numerical work suggests that there is considerable redundancy between the
conditions our current algorithm checks. We also showed that mutually unbiased bases (MUBs)
do not lie in the closure of the set of Gram matrices of coherent states. Another question we
leave open is to determine how well one can approximate MUBs using coherent states. This
might also be an interesting question from the viewpoint of cryptography and specifically quan-
tum key distribution since MUBs are maximally incompatible, that is, they maximize the entropic
uncertainty relations [72].

This leads to an interesting direction for future work: studying finite approximations of Gram
matrices using Gram matrices of coherent states. How far is a matrix from the closure of the set
of Gram matrices of coherent states, if it does not lie in this set? Also, which coherent states
could be used to best approximate this matrix? Another interesting direction would be to extend
our characterization to squeezed states and Gaussian states, which are also easy to create exper-
imentally. Understanding the class of protocols which can be implemented using these different
sets of states would also shed light on the kind of quantum resources required to implement these
protocols. It would help us understand how different states of light can be used to perform differ-
ent communication tasks. This is equivalent to studying the kinds of communication resources
different states of light constitute. Numerous studies have explored such resource theories in op-
tics [73–75]. It would further be interesting to see if this line of work can be connected with these
existing resource theories. Our work only considers the reformulation of the quantum states used
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in communication protocols. In order to implement a protocol, the measurements and operations
used during the protocol also need to be easy to implement. Future work in this area should also
look in this direction.

Lastly, the Gram matrices of a set of states encodes the information about these states rel-
ative to each other. A characterization of Gram matrices can be used as tool for solving other
problems as well. The state discrimination problem for pure states can be completely charac-
terized in terms of their Gram matrix. It might be possible to use our characterization to derive
analytical solutions or bounds for the state discrimination problem for coherent states. Similarly,
Gram matrices also play an important role in the proof of the partial results given in Ref. [76]
towards lower bounds on stabilizer ranks. It might be possible to extend such ideas to the field
of continuous-variable quantum computation using our characterization.

In Chapter 4, we turned our attention to improving the implementation of quantum communi-
cation protocols. We discussed our collaboration with with an experimental group to implement
the quantum fingerprinting protocol with the objective of beating the classical information leak-
age bound. We also studied the bounds on the growth of the mean photon number and the
number of modes of a protocol for optical quantum commmunication protocols in the simulta-
neous message passing model. Firstly, it would be interesting to see if we can generalize our
bounds to protocols in more general and interesting communication models (for example, to two
party interactive communication protocols). Further, it is also not clear at this point if these are
the tightest possible lower bounds for these resources in this model. It would be interesting to
see if one can come up with tighter tradeoff bounds for communication protocols which use only
coherent states and Gaussian states.

We further developed tighter tradeoff relations for coherent state quantum fingerprinting
(QFP) protocols. We showed that the coherent state protocol given in Ref. [12] is almost op-
timal and can only be improved by at most a constant factor. We also suggested a protocol to
improve the rate of coherent state QFP protocols by about 20. It would be interesting to see if the
suggested protocol can be implemented experimentally. As stated earlier, squeezed states and
Gaussian states are also easy to implement. Whether or not one can use squeezed states (or other
easy-to-implement states) to make the QFP protocol faster still remains an open question.

Finally, in Chapter 5, we introduced the temporarily trusted party setting and gave a protocol
for erasable bit commitment (EBC) in this setting. Our EBC protocol used BB84 states. We
believe that these can be replaced with coherent states in a straighforward fashion to make im-
plementation more robust. However, further work needs to be carried out to show this. In order
to make the protocol more experimentally viable, it should be determined if the protocol can be
modified so that it does not require the use of quantum memories (as is the case with the noisy
storage protocols [13]). Quantum memories are very lossy and difficult to create. It would indeed
be very difficult to demonstrate a protocol, like ours, with a large number of quantum memories.
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It would also be interesting to further study the applications of the erasable bit commitment
primitive. Bit commitment can be used to implement several interesting protocols like coin
flipping and secure evaluation of unitaries against specious adversaries [53]. It is also not clear if
the standard stronger version of bit commitment can be implemented in the trusted party setting.
More generally, we also need to further study the temporarily trusted setting and determine if
other interesting cryptographic primitives are also possible in this setting. Further work is also
needed to understand the absolute limits of this setting. For example to determine the minimum
number of trusted parties required to implement EBC. Another interesting direction for future
research would be to relate the temporarily trusted setting and the relativistic setting [65, 68]. In
particular, is there a way to implement bit commitment, with the help of relativistic constraints,
such that some subset of the temporarily trusted parties is only trusted by Alice and the others
are only trusted by Bob.
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Appendix A

Known results used for Chapter 4

A.1 A simple combinatorial inequality

Lemma A.1. For n,m ∈ N we have

(
n +m

m
) ≤ (1 +m)n.

Proof. Observe that

(
n +m

m
) =

(n +m)!

m! n!

=
m + n

n
⋅
m + n − 1

n − 1
⋯
m + 1

1
≤ (1 +m)n.

A.2 Proof of Theorem 4.2

To prove the theorem, we use the Chernoff bound, which we state here for completeness.

Theorem A.1 (Chernoff Bound). For a random variable, X , the following bound holds

P (X ≥ a) ≤ inf
t≥0

{
E[etX]

eta
} . (A.1)
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The E[etX] term is the moment generating function of the random variable, X. For the Pois-
son distribution, X ∼ Poi(λ), this is,

E[etX] = exp (λ(exp(t) − 1)) .

In this case, the bound given in Theorem A.1 can be evaluated to [77]

Pr(X ≥ a) ≤ e−λ (
eλ

a
)

a

(A.2)

Proof of Theorem 4.2. For a parameter ∆ ≥ 0, we define

F∆ ∶= {∣n1⟩ ∣n2⟩⋯ ∣nm⟩ ∶
m

∑
i=1

ni ≤ µ +∆}

V∆ ∶= span{F∆}.

We will show that for an appropriate value of ∆, V∆ is the required Hilbert space. Let P∆ be the
projector onto V∆. Recall that N̂ is the total number operator and for a multimode coherent state
the measurement of this operator is distributed as a Poissonian. Observe that,

∥P∆∥αx⟫ − ∥αx⟫∥
2
2 = Pr∥αx⟫ (N̂ > µ +∆)

≤ e−∥αx∥
2
2 (
e∥αx∥2

2

µ +∆
)

µ+∆

≤ (
eµ

µ +∆
)
µ+∆

For ε > 0, if we set ∆ = (2e − 1)µ + log(4/ε2), we have that

eµ

µ +∆
≤

1

2

and

(
1

2
)
µ+∆

≤
ε2

4
.

In particular, we get

∥P∆∥αx⟫ − ∥αx⟫∥2 ≤
ε

2

Thus, if set ∣ψx⟩ ∶= P∆∥αx⟫/∥P∆∥αx⟫∥2, then, for every x we have

∥∥αx⟫⟪αx∥ − ∣Ψx⟩ ⟨Ψx∣ ∥1 ≤ ε

using the Fuchs- van de Graaf inequality.
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Now, we show that for the value of ∆ chosen above (for ε), log(dim(V∆)) = ∣F∆∣ = O(µ logm).
Observe that ∆ = O(µ). We now bound the cardinality of F∆. Observe that the number of posi-
tive integer solutions to

m

∑
i=1

ni ≤ µ +∆

is lesser than,

(
K∆ +m

m
)

where, K∆ ∶= ⌈µ +∆⌉. Therefore, using Lemma A.1, we have

∣F∆∣ ≤ (
K∆ +m

m
) ≤ (1 +m)K∆ .

Thus, the dimension of the Hilbert space V∆ satisfies

log(dim(V∆)) = ≤K∆ log(1 +m)

≤ (µ +∆ + 1) log(1 +m) = O(µ log(m)). (A.3)

A.3 Interference measurement for general coherent state QFP
protocols

Suppose, that Alice and Bob use the set of coherent states {∥αx⟫}x satisfying ∣⟨∥αx⟫, ∥αy⟫⟩∣ < δ
for x ≠ y as fingerprinting states. In this subsection, we show that the Referee can use
the interference measurement described in Section 4.2.2.2 to determine if x = y with error
δ. Consider x, y ∈ {0,1}n and the corresponding fingerprinting states ∥αx⟫ =⊗

m
i=1 ∣αxi⟩ and

∥αy⟫ =⊗
m
i=1 ∣αyi⟩. Recall once again that a balanced beam splitter transforms the coherent states

as ∣α⟩ ∣β⟩Ð→ ∣(α + β)/
√

2⟩
+
∣(α − β)/

√
2⟩

−
. Average number of photons seen by a CCD detec-

tor at the dark port are
m

∑
i=1

1

2
∣αxi − αyi∣

2 =
1

2
∥αx − αy∥

2
2.

This would be zero for the case when x = y. To discriminate x ≠ y from this case, we calculate
the probability of observing photons at the dark port when x ≠ y.

P (N = 0) = exp(−
1

2
∥αx − αy∥

2
2) = ∣⟨∥αx⟫, ∥αy⟫⟩∣

P (N ≠ 0) = 1 − P (N = 0)

= 1 − ∣⟨∥αx⟫, ∥αy⟫⟩∣

≥ 1 − δ

Since this is true for all x ≠ y, in this case δ is also the error of our protocol.
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Appendix B

Formal proofs for the results presented in
Chapter 5

B.1 Channel Model

As stated in the main body, we study quantum channels with the following authentication guar-
antee: if the quantum channel in one direction between a pair of participants is used n times in
a given timestep, then at least (1 − ε)n of these transmission will be transmitted perfectly, while
the other at most εn transmission might be arbitrarily corrupted by the adversary.

We now argue that this is sufficient to model some random noise, e.g., depolarizing noise,
except with negligeable probability.

As a model for random channel noise, we use a depolarizing qubit channel, which takes
as input a qubit ρ and outputs (1 − ε)ρ + ε I2 for some parameter ε. Note that for any ρ, I

2 =
1
4(ρ + XρX + Y ρY + ZρZ). This is a very general noise model, in particular it is a stronger
form of noise than erasure noise, since we can always further decay an erasure channel into a
depolarizing channel by outputting I

2 whenever there is an erasure flag. Moreover, if we apply n
idenpendent depolarizing channels to n qubits, then, except with probability negligeable in n, the
output of these channel is a combination of at least (1− 3ε

4 + δ)n perfectly transmitted qubits plus
Pauli errors on the remaining qubits, for some small constant δ. We can then denote γ = 1− 3ε

4 +δ
the fraction of perfectly transmitted qubits, except with negligeable probability in n.

B.2 No-go for classical EBC protocols

In this section, we will show that EBC cannot be implemented classically. The proof of this fact
is similar to the proof that unconditionally secure bit commitment cannot be implemented clas-
sically. In particular, we show that if the protocol is statistically hiding for Bob and the trusted
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parties after an erasure phase, then the protocol is not binding for Alice.

We assume that all the trusted nodes are honest but curious and that there is no dishonest
adversarial node (this is sufficient to prove the result). Moreover, we assume that each party
keeps a copy of their message transcripts, since they are allowed to be honest-but-curious. Let
b ∈ {0,1} be Alice’s input. The transcripts after each phase of the protocol for honest Alice and
Bob are given by:

Commit:Mc
b ∶= (ABc

b ,AT
c
b ,BT

c
b , TT

c
b )

Open:Mc
bM

o
b ∶= (ABc

bAB
o
b ,AT

c
bAT

o
b ,BT

c
bBT

o
b , TT

c
b TT

o
b )

Erase:Mc
bM

e
b ∶= (ABc

bAB
e
b ,AT

c
bAT

e
b ,BT

c
bBT

e
b , TT

c
b TT

e
b ).

where the random variable XY ph
b represents the transcript of communication between party

X and party Y during the phase ph of the protocol given that Alice’s commitment is b. The tran-
script of communication between all the trusted parties and Alice is written as AT for the sake of
simplicity. Similarly, BT represents the transcripts between Bob and all of the trusted nodes and
TT the transcripts between all of the trusted nodes. Further, let RB be the private randomness
used by Bob andRT be the private randomness used by all the trusted parties. As we aim to show
that Alice can cheat, we assume that Bob follows the honest strategy throughout the protocol.

If Bob and the trusted parties get together after an erasure, then all the transcripts would be
available to them. The requirement that the protocol be hiding for Bob and the trusted parties
after an erasure implies that

Mc
0M

e
0RBRT ≈εM

c
1M

e
1RBRT

⇒Mc
0RBRT ≈εM

c
1RBRT

using the monotonicity under partial trace. We will now show that a dishonest Alice can use this
to cheat. First, she runs the commit phase for b = 0. Now, if she wishes to open a 0, she simply
runs the open phase honestly. On the other hand, if she wishes to open a 1, then all she has to do
is to run the open phase for 1. In this case, we have

Mc
0RBRT ≈εM

c
1RBRT

⇒Mc
0M̄

o
1RBRT ≈εM

c
1M

o
1RBRT

where M̄o
1 denotes the transcripts produced during the open phase by a dishonest Alice following

our procedure. The approximate equality in the second step follows once again from the mono-
tonicity of the trace distance. The right hand side in the second equation above opens b = 1 due
to correctness with high probability (> 1 − ε). Thus, except with probability 2ε, Alice is able to
open a 1 even though she committed to 0.
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B.3 Proof of Security for the Erasable Bit Commitment pro-
tocol

B.3.1 High-level description

Our definitions are direct adaptation of those of Ref. [13] in the two-party setting to the tem-
porarily trusted setting we study here. There, informally, the bit commitment scheme consist of
commit and open primitives between two parties, Alice and Bob. First, Alice and Bob execute
the commit primitive, where Alice has input x ∈ {0,1}` and Bob has no input. As output, Bob
receives a notification that Alice has chosen an input x ∈ {0,1}`. Afterwards, they may execute
the open protocol, during which Bob either accepts or rejects. If both parties are honest, Bob
always accepts and receives the value x. If Alice is dishonest, however, we still demand that Bob
either outputs the correct value of x or rejects (binding). If Bob is dishonest, he should not be
able to gain any information about x before the open protocol is executed (hiding).

Here, for our erasable bit commitment scheme, Alice and Bob use help from temporarily
trusted nodes T1, . . . ,Tm in order to implement the commit and open primitives. We assume that,
except for at most t of these nodes which might collaborate adversarially, perhaps with a dishon-
est Alice or Bob, all these temporarily trusted nodes act (quantum) honest-but-curiously during
the protocol, without collaborating with any other nodes during the execution of the protocol.
After the execution of the protocol, the trust assumption is lifted: all the temporarily trusted
nodes T1, . . . ,Tm and the dishonest party might gather the data they accumulated during the pro-
tocol and act adversarially against the honest parties. In order to complete the execution of the
protocol (and lift the corresponding trust assumption) after a commit phase which will not be
opened, we add a phase to complement the open phase, which we call an erase phase. This phase
forces the temporarily trusted nodes to forget about the commitment before we end the protocol
and lift the trust assumption.

As is standard to simplify security definitions and protocols achieving such security, and as
is done in Ref. [13], we make use of a randomized version of a commitment. Instead of inputting
her own string x, Alice now receives a random string c at the end of the commit phase. Note that
if Alice wants to commit to a value x of her choice, she may simply send the XOR of her value
with the commitment x⊕ c to Bob at the end of the commit protocol.

B.3.2 Formal definitions for erasable bit commitment

To give a more formal definition, we also provide direct adaptation of the definitions of Ref. [13]
to the current setting with temporarily trusted nodes. Note that we may write the commit, open
and erase protocols as CPTPMs CABT , OABT and EABT , respectively, consisting of the local ac-
tions of honest Alice, Bob and the temporarily trusted nodes on registers T = T1 . . . Tm, together
with any operations they may perform on messages that are exchanged.
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When all parties are honest, the output of the commit protocol will be a state CABT (ρin) =
ρCABT for some fixed input state ρin, where C ∈ {0,1}` is the classical output of Alice, and A,
B and T are the internal states of Alice, Bob and the temporarily trusted nodes, respectively. If
Alice and some nodes TE , forE ⊆ [m] and ∣E∣ ≤ t, are dishonest and collaborate, then they might
not follow the protocol, and we use CA′BT ′ETĒ to denote the resulting map, where Ē ∶= [m] ∖E.
Note that CA′BT ′ETĒ might not have output C, hence we simply write ρA′BT ′ETĒ for the resulting
output state, where A′T ′

E denote the registers of the dishonest Alice and TE . Similarly, we use
CAB′T ′ETĒ

to denote the CPTPM corresponding to the case where Bob and TE are dishonest, and
write ρCAB′T ′ETĒ

for the resulting output state, where B′T ′
E denote the registers of the dishonest

Bob and TE . The case of both Alice and Bob honest but dishonest TE is similar.

The open protocol can be described similarly. If all parties are honest, the map OABT creates
the state ηCC̃F ∶= (IC ⊗ OABT )(ρCABT ), where C̃ ∈ {0,1}` and F ∈ {success, failure} is the
classical output of Bob. Again, if Alice and TE are dishonest, we use OA′BT ′ETĒ

to denote the
resulting map with output ηA′T ′ETĒC̃F . Similarly, we use OCAB′T ′E

to denote the CPTPM corre-
sponding to the case where Bob and TE are dishonest, and write ηCB′T ′E

for the resulting output
state. In the case of both Alice and Bob honest but dishonest TE , we use OCABT ′ETĒ

to denote the
CPTPM corresponding to the case TE are dishonest, and write ηCC̃FT ′ETĒ for the resulting output
state also considering the memory content of the quantum honest-but-curious nodes in TĒ .

The erase protocol can also be described similarly. If all parties are honest, the map EABT
creates the state ζCF ∶= (IC ⊗ EABT )(ρCABT ), where F = erase is the classical output of Bob.
Again, if Alice and TE are dishonest, we use EA′BT ′ETĒ to denote the resulting map with output
ζA′T ′EF . Similarly, we use ECAB′T ′ETĒ

to denote the CPTPM corresponding to the case where
Bob and TE are dishonest, and write ζCB′T ′ETĒ

for the resulting output state also considering the
memory content of the quantum honest-but-curious nodes in TĒ . The case of both Alice and Bob
honest but dishonest TE is similar.

The security definitions for EBC as defined here are direct adaptations of the definitions in
Ref. [13], which are themselves a generalization of the ones in Ref. [50], to our setting.

Definition B.1. An (`, ε) randomized erasable string commitment scheme is a protocol between
Alice, Bob and temporarily trusted nodes T1, . . . ,Tm satisfying the following properties:

Correctness:

Open: If both Alice and Bob are honest, the set of dishonest Ti, E ⊂ [m] is such that ∣E∣ ≤ t,
and the rest of the Ti are quantum honest-but-curious then, after the open protocol, the ideal state
σCCFT is defined such that

1. The distribution of C is uniform, Bob accepts the commitment and the Ti’s learn nothing
about c:

σCFT = τ{0,1}` ⊗ ∣success⟩⟨success∣⊗ σT .

2. The joint state ηCC̃FT created by the real protocol is ε-close to the ideal state
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ηCC̃FT ≈ε σCCFT .

Erase: If both Alice and Bob are honest, ∣E∣ ≤ t and the rest of the Ti are quantum honest-
but-curious, then after the erase protocol, the ideal state σCC̃FT is defined such that

1. The distribution of C is uniform, that of C̃ is constant, Bob outputs an erasure flag and the
Ti’s learn nothing about c:

σCC̃FT = τ{0,1}` ⊗ ∣0⟩⟨0∣⊗ ∣erase⟩⟨erase∣⊗ σT

2. The joint state ζCC̃FT created by the real protocol is ε-close to the ideal state

ζCC̃FT ≈ε σCCFT .

Security for Alice (ε-hiding):
Commit: If Alice is honest, ∣E∣ ≤ t and TĒ are quantum honest-but-curious, then for any joint

state ρCB′T ′ETĒ
created by the commit protocol, the Bob and the adversarial nodes do not learn

C:

ρCB′T ′E
≈ε τ{0,1}` ⊗ ρB′T ′E

Erase: If Alice is honest, ∣E∣ ≤ t and TĒ are quantum honest-but-curious, then for any joint
state ζCB′T ′ETĒ

created by the erase protocol, the adversaries together with the honest-but-curious
nodes do not learn C:

ζCB′T ′ETĒ
≈ε τ{0,1}` ⊗ ζB′T ′ETĒ

.

Security for Bob (ε-binding):
If Bob is honest, ∣E∣ ≤ t and TĒ are quantum honest-but-curious then there exists an ideal

state σC̃A′BT ′ETĒ where C̃ is a classical register such that for all open maps OA′BT ′ETĒ→A
′ĈFT ′ETĒ

1. Bob almost never accepts Ĉ /= C̃:

For σO
C̃A′ĈFT ′ETĒ

= (IC̃ ⊗O)(σC̃A′BT ′ETĒ
),we have

Pr[Ĉ /= C̃ and F = success ] ≤ ε.

2. If the open map is applied to the real committed state, the joint state produced ηA′ĈFT ′ETĒ ∶=
O(ρA′BT ′ETĒ) is ε-close to the ideal state

ηA′ĈFT ′ETĒ
≈ε σ

O
A′ĈFT ′ETĒ

.

88



B.3.3 Security proofs

B.3.3.1 Intermediate results

We will prove some Lemmas, which will act as intermediaries to prove security. In particular,
we will analyze the actions of the honest-but-curious nodes in the protocol.

Lemma B.1 (Corollary to Uhlmann’s Theorem). Suppose that ρ, ρ′ ∈ D(X ) such that 1/2∥ρ −
ρ′∥1 < ε. Then, there exist purifications of ρ and ρ′, ∣ψ⟩ and ∣ψ′⟩ in X ⊗X respectively such that

∣ψ⟩ ⟨ψ∣ ≈√2ε ∣ψ
′⟩ ⟨ψ′∣ (B.1)

Proof. Using the Fuchs-van de Graaf inequality (Theorem 2.4) we have that

F (ρ, ρ′) ≥ 1 −
1

2
∥ρ − ρ′∥1 > 1 − ε.

Further using Uhlmann’s theorem (Theorem 2.3) we have that there exist purifications ∣ψ⟩ and
∣ψ′⟩ in X ⊗X of ρ and ρ′ such that

F (ρ, ρ′) = ∣ ⟨ψ∣ψ′⟩ ∣,

which implies that

∣ ⟨ψ∣ψ′⟩ ∣ > 1 − ε.

Now using the fact ( [16, Eq. 1.186]) that

1

2
∥ ∣ψ⟩ ⟨ψ∣ − ∣ψ′⟩ ⟨ψ′∣ ∥1 =

√
1 − ∣ ⟨ψ∣ψ′⟩ ∣2

we have

1

2
∥ ∣ψ⟩ ⟨ψ∣ − ∣ψ′⟩ ⟨ψ′∣ ∥1 <

√
2ε.

In the following Lemma, we consider the action of an honest-but-curious node in the erasable
bit commitment protocol in a general fashion. We suppose that Alice sends the T part of the
state ρRT to the party T . The R part of the state may be arbitrarily distributed between the rest
of parties. For example, in the real protocol the register R = (A, T̄ ), where T̄ represents all the
trusted nodes other than the node T . Then, we consider the cases of ’Open’ and ’Erase’ and
show that the state held by T after these are almost decoupled from the state that Alice gave him.
In particular, we assume that after the announcement of ’Open’ (or ’Erase’), T applies the map
ΦO
T→BT ′ (or ΦE

T→AT ′) to his part of ρRT and sends theB (orA) share of the state to Bob (or Alice).
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Similarly, the rest of the parties apply an arbitrary channel, ΦR to the register R. This channel
can be arbitrary since the behaviour of T should appear honest irrespective of the strategies of
the other parties by definition. We then show that

(ΦR ⊗ΦO
T→BT ′)(ρRT ) ≈O(

√
δ) (ΦR ⊗ IT→B)(ρRT )⊗ σ̃T ′

(ΦR ⊗ΦE
T→AT ′)(ρRT ) ≈O(

√
δ) (ΦR ⊗ IT→A)(ρRT )⊗ ω̃T ′

where σ̃T ′ and ω̃T ′ are fixed states.

Lemma B.2. Let T be a δ−honest-but-curious node in the erasable bit commitment protocol.
Suppose that during the commit stage of the protocol, Alice sends the T substate of the state
ρRT to the party T . The R part of the state is distributed arbitrarily between the parties other
than T . Further, suppose that in the case of an ’Open’, T applies the channel ΦO

T→BT ′ to his
state T . Then, there exists a state σ̃T ′ such that for every state ρRT distributed by Alice during
the commit stage and every channel ΦR applied on R during the open phase, the state ηRBT ′ ∶=
(ΦR ⊗ ΦO

T→BT ′)(ρRT ) (where the B part is given to Bob by T and the T ′ part is held by T )
produced during the open phase is such that

ηRBT ′ ≈5
√

2δ (ΦR ⊗ IT→B)(ρRT )⊗ σ̃T ′ .

Similarly, suppose that in the case of an ’Erase’, T applies the channel ΦE
T→AT ′ to his state

T . Then, there exists a state ω̃T ′ such that for every state ρRT distributed by Alice during the
commit stage and every channel ΦR applied on R during the erase phase, the state ζRAT ′ ∶=
(ΦR⊗ΦE

T→AT ′)(ρRT ) (where the A part is given back to Alice by T and the T ′ part is held by T )
produced during the erase phase is such that

ζRAT ′ ≈5
√

2δ (ΦR ⊗ IT→A)(ρRT )⊗ ω̃T ′ .

Proof. The proof of this Lemma follows the same argument as the proof of the Rushing Lemma
in (Lemma 6.2 in [53]). We will prove this Lemma only for the case of an ’Open’. The case of
an ’Erase’ follows similarly. Note that due to convexity of the trace norm, it suffices to prove
this Lemma for pure states. Further, it is also sufficient to consider isometric channels ΦR for an
arbitrary register R, since one can use the Stinespring representation to write a general channel
as an isometric channel composed with the partial trace (see for example [16, Sec. 2.2.2]) and
the trace distance decreases under a partial trace operation.

Suppose that after the announcement of ’Open’, the trusted node T applies the map ΦO
T→BT ′

and the isometric channel ΦR is applied to the register R by the other parties. Choose and fix a
state ρ(1)RT ∶= ∣ψ

(1)
RT ⟩ ⟨ψ

(1)
RT ∣. We then define the state

η
(1)
RBT ′ = (ΦR ⊗ΦO

T→BT ′)(ρ
(1)
RT ).
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Since T is δ-honest-but-curious in the case of an open, there exists a channel TT ′ such that

(IRB ⊗ TT ′)(η
(1)
RBT ′) ≈δ (ΦR ⊗ IT→B)(ρ

(1)
RT )

⇒ η
(1)
RB ≈δ (ΦR ⊗ IT→B)(ρ

(1)
RT ).

Now, we use Lemma B.1 and the fact that (ΦR ⊗ IT→B)(ρ
(1)
RT ) is a pure state to show that there

exists a state σ′T ′′ and a purification η(1)RBT ′′ of η(1)RB such that

η
(1)
RBT ′′ ≈

√
2δ (ΦR ⊗ IT→B)(ρ

(1)
RT )⊗ σ

′
T ′′ .

Further, since η(1)RBT ′′ is a purification of η(1)RB and has the same partial state as η(1)RBT ′ on registers R
and B, there exists a quantum channel ΩT ′′→T ′ acting only on T ′′ transforming η(1)RBT ′′ into η(1)RBT ′
( [16, Proposition 2.29]). Thus, we have

η
(1)
RBT ′ ≈

√
2δ (ΦR ⊗ IT→B)(ρ

(1)
RT )⊗ σ̃T ′ (B.2)

where σ̃T ′ = ΩT ′′→T ′(σ′T ′′).

We claim that this state σ̃T ′ is the required state. Consider the state ρ = ∣ψRT ⟩ ⟨ψRT ∣. Now, let
∣ψ′R′RT ⟩ ∶= 1/

√
2(∣1R′⟩ ∣ψRT ⟩ + ∣2R′⟩ ∣ψ

(1)
RT ⟩) where ∣1R′⟩ and ∣2R′⟩ are orthonormal states. Define

the states

ηRBT ′ ∶= (ΦR ⊗ΦO
T→BT ′)(∣ψRT ⟩ ⟨ψRT ∣))

η′R′RBT ′ ∶= (IR′ ⊗ΦR ⊗ΦO
T→BT ′)(∣ψ

′
R′RT ⟩ ⟨ψ

′
R′RT ∣)).

Since, the node is δ-honest-but-curious irrespective of the strategy of the other parties, we once
again have

η′R′RB ≈δ (ΦR ⊗ IT→B)(∣ψ
′
R′RT ⟩ ⟨ψ

′
R′RT ∣))

where we have omitted the identity map on R′ for brevity. Arguing as before, we see that there
exists a state σ′′T ′ such that

η′R′RBT ′ ≈
√

2δ (ΦR ⊗ IT→B)(∣ψ
′
R′RT ⟩ ⟨ψ

′
R′RT ∣)⊗ σ

′′
T ′ .

If we now apply the channel of the measurement in the {∣1R′⟩ ⟨1R′ ∣ , ∣2R′⟩ ⟨2R′ ∣} to both the sides
of the above equation we get

ηRBT ′ ≈2
√

2δ (ΦR ⊗ I(T→B))(∣ψRT ⟩ ⟨ψRT ∣))⊗ σ
′′
T ′ (B.3)

η
(1)
RBT ′ ≈2

√
2δ (ΦR ⊗ I(T→B))(∣ψ

(1)
RT ⟩ ⟨ψ

(1)
RT ∣))⊗ σ

′′
T ′ (B.4)

Combining Eq. B.2 and Eq. B.4, we get

σ′′T ′ ≈3
√

2δ σ̃T ′ .

Using this we can show that

ηRBT ′ ≈5
√

2δ (ΦR ⊗ I(T→B))(∣ψRT ⟩ ⟨ψRT ∣))⊗ σ̃T ′

which proves our claim since ∣ψRT ⟩ was arbitrary.
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In the next Lemma, we consider the action of all the honest temporarily trusted nodes together
during the protocol. This Lemma will be useful while proving the various security definitions.
LetE be the set of adversarial trusted nodes (Ti). We assume that at least one of Alice and Bob is
honest. This assumption is satisfied by the hypotheses of our security requirements. Under this
assumption, during the commit stage Alice distributes the state ρA′BCTĒTE , where the register
BC = (Θ, Z,R) and is held by Bob. Apart from this restriction, we do not place any other
restrictions on the behaviour of these parties. Alice, Bob and the adversarial trusted nodes TE
follow an arbitrary (possibly dishonest) strategy during the protocol and the trusted nodes TĒ act
honest-but-curiously. Under these conditions, we show that the trusted nodes act almost honestly
upto storing some fixed state in their memories.

Lemma B.3. Consider the erasable bit commitment protocol. Let E be the set of adversarial
trusted nodes (Ti). We assume that one of the parties Alice or Bob is honest. Suppose that during
the commit stage, (possibly dishonest) Alice prepares and distributes the state ρA′BCTĒTE , where
the registerBC = (Θ, Z,R) and is held by Bob. Let ΦO

ABCTE
be the channel applied by Alice, Bob

and the adversarial nodes in case of an ’Open’. Similarly, let ΦE
ABCTE

be the channel applied by
Alice, Bob and the adversarial nodes in case of an ’Erase’. Then, in case of an ’Open’, the state
received by Bob ηAT ′

Ē
T ′EBCB

(where T ′

Ē
and T ′

E are registers held by TĒ and TE after an ’Open’)
satisfies

ηA′T ′
Ē
T ′EBCB

≈m
√

2δ (ITĒ→BĒ ⊗ΦO
ABCTE

)(ρA′BCTĒTE)⊗ σ̃TĒ .

for some fixed state σ̃TĒ . In the case of an ’Erase’, the state ζA′T ′
Ē
T ′EBC

received back by Alice
satisfies (where T ′

Ē
and T ′

E are registers held by TĒ and TE after an ’Erase’)

ζA′T ′
Ē
T ′EBC

≈m
√

2δ (ITĒ→AĒ ⊗ΦE
ABCTE

)(ρA′BCTĒTE)⊗ ω̃TĒ .

for some fixed state ω̃TĒ .

Proof. Once again, we will prove the statement for the case of an ’Open’. The proof for an
’Erase’ follows similarly. Suppose, that in case of an ’Open’, each honest-but-curious node Ti
for i ∈ Ē applies the channel ΦTi ∶= ΦO

Ti→BiT ′i
and the other parties apply the channel ΦO

ABCTE

collectively to their states. Thus,

ηA′T ′
Ē
T ′EBCB

= ((⊗
i∈Ē

ΦTi)⊗ΦO
ABCTE

)(ρA′BCTĒTE)

Now using Lemma B.2, we know that there exist fixed states σ̃Ti for i ∈ Ē for which

ηA′T ′
Ē
T ′EΘB ≈5

√
2δ

⎛

⎝
ITĒ1

→BĒ1
⊗

⎛

⎝
⊗

i∈Ē;i≠Ē1

ΦTi

⎞

⎠
⊗ΦO

ABCTE

⎞

⎠
(ρA′BCTĒTE)⊗ σ̃TĒ1

≈5∣Ē∣
√

2δ (ITĒ→BĒ ⊗ΦO
ABCTE

) (ρA′BCTĒTE)⊗⊗
i∈Ē

σ̃T ′i

≈5m
√

2δ (ITĒ→BĒ ⊗ΦO
ABCTE

) (ρA′BCTĒTE)⊗⊗
i∈Ē

σ̃T ′i

where the second step is the result of repeating the first step multiple times, and in the third step
we use the fact that ∣Ē∣ ≤m. Hence, the Lemma is true for σ̃TĒ ∶= ⊗i∈Ēσ̃T ′i
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B.3.3.2 Correctness for honest Alice and Bob

Correctness for Open:

Proof. If Alice is honest, then she generates the state

ρXΘZT ∶= ∑
x,θ,z

2−(2n+k) ∣x⟩ ⟨x∣⊗ ∣θ⟩ ⟨θ∣⊗ ∣z⟩ ⟨z∣⊗Hθ ∣Enc(x)⊕ z⟩ ⟨Enc(x)⊕ z∣Hθ

and sends θ, z to Bob, and the registers T = (Ti) to the trusted nodes. Let E be the set of
adversaries. Suppose, that in case of an open each honest-but-curious node Ti for i ∈ Ē applies
the channel ΦTi ∶= ΦTi→BiT ′i

and the adversarial nodes apply the channel ΦTE ∶= ΦTE→BET
′

E

collectively to their states. Let ηXΘBT ′
Ē
T ′E

be the real state of the protocol after the trusted nodes
forwards their shares to Bob, that is

ηXΘZBT ′
Ē
T ′E

= ((⊗
i∈Ē

ΦTi)⊗ΦTE)(ρXΘZT )

Further, we suppose that Alice and Bob shared a random r ∈ R for privacy amplification during
the commit phase. By Lemma B.3 we know that

ηXΘZBT ′
Ē
T ′E

≈5m
√

2δ (ITĒ→BĒ ⊗ΦTE) (ρXΘZT )⊗ σ̃T ′
Ē
. (B.5)

for some fixed state σ̃T ′
Ē

. For this strategy of the trusted nodes we define the ideal state σCCFT to
simply be the state

σCCFT ∶=∑
c

2−l ∣cc⟩ ⟨cc∣⊗ ∣success⟩ ⟨success∣⊗ σT

for σT defined as

σT ∶= σ̃T ′
Ē
⊗ ηT ′E

where ηT ′E is the partial state held by the nodes TE at the end of the ’Open’ stage in the real
protocol. This ideal state satisfies the security requirements given in B.1. Further, if we apply
the decoding map to both sides of Eq. B.5, we see that Bob is able to recover X̂ = X with high
probability since ∣E∣ ≤ t and the channel error rate is γ. Now observe that

H5m
√

2δ
min (X ∣T ′

Ē
T ′
E)η ≥ (δc + δ

′)n

by using Eq. B.5 and an argument similar to the one given in Sec. 5.5.5. By privacy amplification
(` = δcn), we can show that the distance between the ideal state and the real state is at most

ε′ = 2−
δ′n
2
−1 + 5m

√
2δ.

Correctness for Erase: Following the same arguments as above one can prove the correct-
ness of Erase in our protocol.
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B.3.3.3 Security for honest Alice

The hiding properties of the protocol during the commit stage were proven in Section 5.5.3.

Further, the proof of security for Alice after an erase follows the argument as the proof for
correctness of an Erase. The only difference being that the adversaries in this case have access
to Θ as well. The arguments given in Section 5.5.4 handle this too.

B.3.3.4 Security for honest Bob

Proof. We now formally prove security for honest Bob. We use a simulator argument similar to
that used in Ref. [13] (proof of Theorem III.5) to define the ideal state σC̃A′BT ′ETĒ . We show that

Alice is committed to C̃ after the commit phase, i.e. she cannot open something different than C̃
except with negligible probability.

Suppose that during the commit phase of the real protocol, Alice sends the T part of the
state ρA′T to the trusted nodes and θ and r to Bob. Also, let ΦTi be the channel applied by the
honest-but-curious node i ∈ Ē. First, for the honest-but-curious party i ∈ Ē, we let the state σ̃Ti
be the state shown to exist in Lemma 2, such that for every initial state ρATīTi and every channel
ΦATī applied to the registers held by all the other parties

(ΦATī ⊗ΦTi)(ρATīTi) ≈5
√

2δ (ΦATī ⊗ ITi→Bi)(ρATīTi)⊗ σ̃T ′i .

Now, we show the existence of the ideal state σC̃A′BT ′ETĒ algorithmically by making Alice and
the Ti’s interact with a simulator. Imagine a protocol Πsim where instead of sending the quantum
states to the trusted parties during the commit stage, Alice sends the shares of the honest-but-
curious parties ρTĒ to a simulator and the share of the adversaries to the adversaries. Alice also
shares θ and r with the simulator. The simulator measures ρTĒ in the θ basis to get ȳĒ . Define
ȳ ∶= (ȳĒ 0E) and let ỹ be the codeword closest to ȳ. Further, let x̃ ∶= Dec(ỹ) and c̃ ∶= Ext(x̃, r).
Then, it re-encodes ȳĒ in the θ basis (asHθ ∣ȳĒ⟩) and sends it to the honest-but-curious parties Ē.
Further, in this protocol, we assume that in the case of an ’Open’, the honest-but-curious nodes
i ∈ Ē, Ti apply the channel Φ

(id)
Ti

which we define as Φ
(id)
Ti

(ρ) = ρ⊗ σ̃Ti for every state ρ. Finally,
Alice and the adversaries TE apply whatever channel they apply during the commit stage in the
real protocol. To prepare the ideal state σC̃A′BT ′ETĒ , the parties follow the above protocol. The

register C̃ simply contains the string c̃.

We now prove that for any strategy of Alice and the adversaries after the commit stage on
the ideal state defined above, Bob opens the string c̃ during a successful open. Suppose, Bob
measures the state, he receives during the open stage, in the θ basis and gets the outcome ŷ. Since,
the TĒ do not change or disturb their states during Πsim, the Hamming distance (h) between ŷ
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and ȳ satisfies

h(ŷ, ȳ) ≤ ∣E∣
n

m
+ γn

≤ (
t

m
+ γ)n =

d − 1

4
.

with high probability. Further, we have that h(ŷ, ỹ) ≤ h(ŷ, ȳ) + h(ȳ, ỹ) ≤ 3(d − 1)/4. For any
codeword y′ such that y′ ≠ ỹ, we have that

h(ŷ, y′) ≥ h(ỹ, y′) − h(ỹ, ŷ)

≥ d −
3(d − 1)

4
>
d − 1

4
.

Since, Bob discards the commitment in case the Hamming distance between the measured string
and the nearest codeword is more than (d − 1)/4, the adveraries cannot change the commitment
after the commit stage. Hence, the ideal state defined above satisfies the security definition.

Now, we will prove that the real state produced during the protocol is close to the ideal
one after the open map is applied. Since, the action of the trusted nodes and the simulator in
Πsim commutes, this protocol would produce the same state as a protocol where the simulator
is between the trusted nodes and Bob. Then, observe that in Πsim, since the simulator encodes
the string ȳĒ in the θ basis and Bob measures this in the θ basis, we can simply remove this re-
encoding and measurement step from the modified protocol. The protocol constructed this way,
though, is exactly the original protocol, except for the fact that the honest-but-curious nodes
instead of applying the maps ΦTi , apply Φ

(id)
Ti

. Using Lemma B.3, we can prove that the state of
this protocol is 5m

√
2δ close to the real state.

B.4 Decoupling of honest-but-curious nodes during the pro-
tocol

In addition to satisfying the hiding property for Bob’s and the adversarial nodes, our protocol
satisfies the following hiding condition for the honest-but-curious nodes.

Definition B.2 (Hiding for the honest-but-curious nodes). If Alice is honest, ∣E∣ ≤ t and TĒ are
quantum honest-but-curious, then for any joint state ρCB′T ′ETĒ

created by the commit protocol,
the honest-but-curious nodes do not learnC, or equivalently, they are completely decoupled from
C:

∀i ∈ Ē ∶ ρCTi ≈ε τ{0,1}l ⊗ ρTi

The proof of that our protocol satisfies this property was given in Sec. 5.6.1.
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B.5 Definitions and proofs for the expungement property

B.5.1 Definition of the expungement property

Definition B.3. An (`, ε) randomized erasable string commitment scheme is said to satisfy the
expungement on success property if it satisfies the following properties:

Open: If both Alice and Bob are honest and FA = FB = success after the open protocol, then
there exists an ideal state σCCFT satisfying the following

1. The distribution of C is uniform and the Ti’s learn nothng about c:

σCFT = τ{0,1}` ⊗ ∣success⟩⟨success∣⊗ σT .

2. The joint state ηCC̃FT created by the real protocol is ε-close to the ideal state

ηCC̃FT ≈ε σCCFT .

Erase: If Alice is honest, Bob does not collaborate with the trusted nodes during the protocol
and FA = erase after the erase protocol, then the joint state ζCB′T created by the erase protocol
satisfies the following:

ζCB′T ≈ε τ{0,1}` ⊗ ζB′T .

B.5.2 Proof of the expungement property

We only prove min-entropy bounds on the relevant states. These are sufficient to prove the re-
quired statements. However, depending on the noise parameters it might be necessary to change
the some of the protocol parameters to achieve security as above. In order to complete the proof
that our robust protocol satisfies the expungement property, we first list the properties of min-
entropy that we will use, and then derive the desired min-entropy bound. We denote by E the
register of the adversarial trusted node who keeps information about X , by ψTXY ZUθ the state
prepared by Alice and by ρEXY ZUθ = NT→E(ψTXY ZUθ) the state after the adversary acted on T
and kept register E.

B.5.2.1 Preliminaries for min-entropy bound

We have x ∈R {0,1}k, z ∈R {0,1}n, θ ∈R {0,1}n .

Also, y = Enc(x), u = y ⊕ z, y = u⊕ z and ∣ψ⟩ =Hθ ∣u⟩.

96



Hence, ψuTZ = ψuT ⊗ ρ
u
Z and then ρuEZ = NT→E(ψuTZ) = NT→E(ψuT ) ⊗ ρ

u
Z = ρuE ⊗ ρuZ with

ρuZ = Enc(τX), and then

Hmin(Z ∣UE) = Hmin(Z ∣U). (B.6)

Then,

Hmin(Z ∣U) = Hmax(Z ∣U) = Hmin(U ∣Z) = k, (B.7)

since Hmin(Z ∣U) = Hmin(Y ∣U) = Hmin(Y ) = Hmin(X) = k, and similarly for Hmax(Z ∣U)

and Hmin(U ∣Z).

For smooth entropies, we also have that

Hε
min(X ∣EZ) = Hε

min(Y ∣EZ) = Hε
min(U ∣EZ), (B.8)

in which the last equality follows from [78, Lemma A.7].

We also make use of the following chain rules for smooth entropies (these are special cases
of the inequalities proven in [63]), with fε = log( 1

1−
√

1−ε2
),

H2ε
min(AB∣C) ≥ Hmin(A∣BC) +Hε

min(B∣C) − fε, (B.9)
Hε

max(AB∣C) ≤ Hmax(A∣BC) +Hmax(B∣C) + fε, (B.10)
H2ε

min(AB∣C) ≤ H7ε
min(A∣BC) +H2ε

max(B∣C) + 2fε, (B.11)
Hε

max(AB∣C) ≥ Hmin(A∣BC) +H2ε
max(B∣C) − 2fε. (B.12)

We use the fact that the smooth entropies satisfy a data processing inequality,

Hε
max(Z ∣E) ≤ Hε

max(Z). (B.13)

Finally, we use the following bound from uncertainty relation/sampling, for some parameters
µε and δε, and for γ the tolerable noise rate,

Hε
min(U ∣E) ≥ n(1 −H2(γ + µε)) − δε. (B.14)
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B.5.2.2 Deriving the min-entropy bound

We can now prove the desired bound on H7ε
min(X ∣EZ),

k −H7ε
min(X ∣EZ) = Hmin(U ∣Z) −H7ε

min(U ∣EZ) by (B.7) and (B.8)

≤ Hε
max(UZ) −H2ε

max(Z) + 2fε by (B.12)

−H2ε
min(UZ ∣E) +H2ε

max(Z ∣E) + 2fε by (B.11)

≤ Hε
max(UZ) −H2ε

min(UZ ∣E) + 4fε by (B.13)

≤ Hmax(U) +Hmax(Z ∣U) + fε by (B.10)

−Hε
min(U ∣E) −Hmin(Z ∣UE) + fε + 4fε by (B.9)

= n +Hmax(Z ∣U) + 6fε

−Hε
min(U ∣E) −Hmin(Z ∣U) by (B.6)

= n −Hε
min(U ∣E) + 6fε by (B.7)

≤ n − n(1 −H2(γ + µε)) + δε + 6fε by (B.14)

= n(H2(γ + µε)) + δε + 6fε.

Rearranging terms, we get

H7ε
min(X ∣EZ) ≥ k − n(H2(γ + µε)) − δε − 6fε. (B.15)
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